{"title":"脑电图中视觉特征多尺度复用表征的证据","authors":"Hamid Karimi-Rouzbahani","doi":"10.1162/neco_a_01649","DOIUrl":null,"url":null,"abstract":"Distinct neural processes such as sensory and memory processes are often encoded over distinct timescales of neural activations. Animal studies have shown that this multiscale coding strategy is also implemented for individual components of a single process, such as individual features of a multifeature stimulus in sensory coding. However, the generalizability of this encoding strategy to the human brain has remained unclear. We asked if individual features of visual stimuli were encoded over distinct timescales. We applied a multiscale time-resolved decoding method to electroencephalography (EEG) collected from human subjects presented with grating visual stimuli to estimate the timescale of individual stimulus features. We observed that the orientation and color of the stimuli were encoded in shorter timescales, whereas spatial frequency and the contrast of the same stimuli were encoded in longer timescales. The stimulus features appeared in temporally overlapping windows along the trial supporting a multiplexed coding strategy. These results provide evidence for a multiplexed, multiscale coding strategy in the human visual system.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"36 3","pages":"412-436"},"PeriodicalIF":2.7000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence for Multiscale Multiplexed Representation of Visual Features in EEG\",\"authors\":\"Hamid Karimi-Rouzbahani\",\"doi\":\"10.1162/neco_a_01649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distinct neural processes such as sensory and memory processes are often encoded over distinct timescales of neural activations. Animal studies have shown that this multiscale coding strategy is also implemented for individual components of a single process, such as individual features of a multifeature stimulus in sensory coding. However, the generalizability of this encoding strategy to the human brain has remained unclear. We asked if individual features of visual stimuli were encoded over distinct timescales. We applied a multiscale time-resolved decoding method to electroencephalography (EEG) collected from human subjects presented with grating visual stimuli to estimate the timescale of individual stimulus features. We observed that the orientation and color of the stimuli were encoded in shorter timescales, whereas spatial frequency and the contrast of the same stimuli were encoded in longer timescales. The stimulus features appeared in temporally overlapping windows along the trial supporting a multiplexed coding strategy. These results provide evidence for a multiplexed, multiscale coding strategy in the human visual system.\",\"PeriodicalId\":54731,\"journal\":{\"name\":\"Neural Computation\",\"volume\":\"36 3\",\"pages\":\"412-436\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10535055/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10535055/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Evidence for Multiscale Multiplexed Representation of Visual Features in EEG
Distinct neural processes such as sensory and memory processes are often encoded over distinct timescales of neural activations. Animal studies have shown that this multiscale coding strategy is also implemented for individual components of a single process, such as individual features of a multifeature stimulus in sensory coding. However, the generalizability of this encoding strategy to the human brain has remained unclear. We asked if individual features of visual stimuli were encoded over distinct timescales. We applied a multiscale time-resolved decoding method to electroencephalography (EEG) collected from human subjects presented with grating visual stimuli to estimate the timescale of individual stimulus features. We observed that the orientation and color of the stimuli were encoded in shorter timescales, whereas spatial frequency and the contrast of the same stimuli were encoded in longer timescales. The stimulus features appeared in temporally overlapping windows along the trial supporting a multiplexed coding strategy. These results provide evidence for a multiplexed, multiscale coding strategy in the human visual system.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.