{"title":"相关系数的元分析:处理测量误差的警示故事。","authors":"Qian Zhang","doi":"10.1037/met0000498","DOIUrl":null,"url":null,"abstract":"<p><p>A scale to measure a psychological construct is subject to measurement error. When meta-analyzing correlations obtained from scale scores, many researchers recommend correcting for measurement error. I considered three caveats when correcting for measurement error in meta-analysis of correlations: (a) the distribution of true scores can be non-normal, resulting in violation of the normality assumption for raw correlations and Fisher's z transformed correlations; (b) coefficient alpha is often used as the reliability, but correlations corrected for measurement error using alpha can be inaccurate when some assumptions of alpha (e.g., tau-equivalence) are violated; and (c) item scores are often ordinal, making the disattenuation formula potentially problematic. Via three simulation studies, I examined the performance of two meta-analysis approaches-with raw correlations and z scores. In terms of estimation accuracy and coverage probability of the mean correlation, results showed that (a) considering the true-score distribution alone, estimation of the mean correlation was slightly worse when true scores of the constructs were skewed rather than normal; (b) when the tau-equivalence assumption was violated and coefficient alpha was used for correcting measurement error, the mean correlation estimates can be biased and coverage probabilities can be low; and (c) discretization of continuous items can result in biased estimates and undercoverage of the mean correlations even when tau-equivalence was satisfied. With more categories and/or items on a scale, results can improve whether tau-equivalence was met or not. Based on these findings, I gave recommendations for conducting meta-analyses of correlations. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":"308-330"},"PeriodicalIF":7.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-analysis of correlation coefficients: A cautionary tale on treating measurement error.\",\"authors\":\"Qian Zhang\",\"doi\":\"10.1037/met0000498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A scale to measure a psychological construct is subject to measurement error. When meta-analyzing correlations obtained from scale scores, many researchers recommend correcting for measurement error. I considered three caveats when correcting for measurement error in meta-analysis of correlations: (a) the distribution of true scores can be non-normal, resulting in violation of the normality assumption for raw correlations and Fisher's z transformed correlations; (b) coefficient alpha is often used as the reliability, but correlations corrected for measurement error using alpha can be inaccurate when some assumptions of alpha (e.g., tau-equivalence) are violated; and (c) item scores are often ordinal, making the disattenuation formula potentially problematic. Via three simulation studies, I examined the performance of two meta-analysis approaches-with raw correlations and z scores. In terms of estimation accuracy and coverage probability of the mean correlation, results showed that (a) considering the true-score distribution alone, estimation of the mean correlation was slightly worse when true scores of the constructs were skewed rather than normal; (b) when the tau-equivalence assumption was violated and coefficient alpha was used for correcting measurement error, the mean correlation estimates can be biased and coverage probabilities can be low; and (c) discretization of continuous items can result in biased estimates and undercoverage of the mean correlations even when tau-equivalence was satisfied. With more categories and/or items on a scale, results can improve whether tau-equivalence was met or not. Based on these findings, I gave recommendations for conducting meta-analyses of correlations. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"308-330\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000498\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/5/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000498","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
Meta-analysis of correlation coefficients: A cautionary tale on treating measurement error.
A scale to measure a psychological construct is subject to measurement error. When meta-analyzing correlations obtained from scale scores, many researchers recommend correcting for measurement error. I considered three caveats when correcting for measurement error in meta-analysis of correlations: (a) the distribution of true scores can be non-normal, resulting in violation of the normality assumption for raw correlations and Fisher's z transformed correlations; (b) coefficient alpha is often used as the reliability, but correlations corrected for measurement error using alpha can be inaccurate when some assumptions of alpha (e.g., tau-equivalence) are violated; and (c) item scores are often ordinal, making the disattenuation formula potentially problematic. Via three simulation studies, I examined the performance of two meta-analysis approaches-with raw correlations and z scores. In terms of estimation accuracy and coverage probability of the mean correlation, results showed that (a) considering the true-score distribution alone, estimation of the mean correlation was slightly worse when true scores of the constructs were skewed rather than normal; (b) when the tau-equivalence assumption was violated and coefficient alpha was used for correcting measurement error, the mean correlation estimates can be biased and coverage probabilities can be low; and (c) discretization of continuous items can result in biased estimates and undercoverage of the mean correlations even when tau-equivalence was satisfied. With more categories and/or items on a scale, results can improve whether tau-equivalence was met or not. Based on these findings, I gave recommendations for conducting meta-analyses of correlations. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.