用于特发性正常压力脑积水 (INPH) 监测的可穿戴步态分析设备。

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Erdem Atbas, Patrick Gaydecki, Michael J Callaghan
{"title":"用于特发性正常压力脑积水 (INPH) 监测的可穿戴步态分析设备。","authors":"Erdem Atbas, Patrick Gaydecki, Michael J Callaghan","doi":"10.1088/2057-1976/ad2a1a","DOIUrl":null,"url":null,"abstract":"<p><p>Idiopathic Normal Pressure Hydrocephalus (iNPH) is a progressive neurologic disorder (fluid build-up in the brain) that affects 0.2%-5% of the UK population aged over 65. Mobility problems, dementia and urinary incontinence are symptoms of iNPH but often these are not properly evaluated, and patients receive the wrong diagnosis. Here, we describe the development and testing of firmware embedded in a wearable device in conjunction with a user-based software system that records and analyses a patient's gait. The movement patterns, expressed as quantitative data, allow clinicians to improve the non-invasive assessment of iNPH as well as monitor the management of patients undergoing treatment. The wearable sensor system comprises a miniature electronic unit that attaches to one ankle of the patient via a simple Velcro strap which was designed for this application. The unit monitors acceleration along three axes with a sample rate of 60 Hz and transmits the data via a Bluetooth communication link to a tablet or smart phone running the Android and the iOS operating systems. The software package extracts statistics based on stride length, stride height, distance walked and speed. Analysis confirmed that the system achieved an average accuracy of at least 98% for gait tests conducted over distances 9 m. This device has been developed to assist in the management and treatment of older adults diagnosed with iNPH.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A wearable gait-analysis device for idiopathic normal-pressure hydrocephalus (INPH) monitoring.\",\"authors\":\"Erdem Atbas, Patrick Gaydecki, Michael J Callaghan\",\"doi\":\"10.1088/2057-1976/ad2a1a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Idiopathic Normal Pressure Hydrocephalus (iNPH) is a progressive neurologic disorder (fluid build-up in the brain) that affects 0.2%-5% of the UK population aged over 65. Mobility problems, dementia and urinary incontinence are symptoms of iNPH but often these are not properly evaluated, and patients receive the wrong diagnosis. Here, we describe the development and testing of firmware embedded in a wearable device in conjunction with a user-based software system that records and analyses a patient's gait. The movement patterns, expressed as quantitative data, allow clinicians to improve the non-invasive assessment of iNPH as well as monitor the management of patients undergoing treatment. The wearable sensor system comprises a miniature electronic unit that attaches to one ankle of the patient via a simple Velcro strap which was designed for this application. The unit monitors acceleration along three axes with a sample rate of 60 Hz and transmits the data via a Bluetooth communication link to a tablet or smart phone running the Android and the iOS operating systems. The software package extracts statistics based on stride length, stride height, distance walked and speed. Analysis confirmed that the system achieved an average accuracy of at least 98% for gait tests conducted over distances 9 m. This device has been developed to assist in the management and treatment of older adults diagnosed with iNPH.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad2a1a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad2a1a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

特发性正常压力脑积水(iNPH)是一种进行性神经系统疾病(脑积水),英国 65 岁以上人口中约有 0.2%-5% 患有此病。行动不便、痴呆和尿失禁是 iNPH 的症状,但这些症状往往没有得到适当的评估,因此患者会得到错误的诊断。在此,我们介绍了一种可穿戴设备的开发和测试情况,该设备可记录和分析患者的步态。以定量数据表示的运动模式可帮助临床医生改进对 iNPH 的无创诊断,并监测正在接受治疗的患者的管理情况。可穿戴传感器系统由一个微型电子装置组成,通过一条简单的尼龙搭扣带固定在患者的一只脚踝上。该装置以 60 Hz 的采样率监测三个轴的加速度,并通过蓝牙通信链路将数据传输到运行 Android 和 iOS 操作系统的平板电脑或智能手机上。软件包根据步长、步高、行走距离和速度提取统计数据。分析证实,该系统对距离 9 米的步态测试的平均准确率至少达到 98%。使用该设备将改善 iNPH 的诊断过程和管理,以及该疾病的治疗和管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A wearable gait-analysis device for idiopathic normal-pressure hydrocephalus (INPH) monitoring.

Idiopathic Normal Pressure Hydrocephalus (iNPH) is a progressive neurologic disorder (fluid build-up in the brain) that affects 0.2%-5% of the UK population aged over 65. Mobility problems, dementia and urinary incontinence are symptoms of iNPH but often these are not properly evaluated, and patients receive the wrong diagnosis. Here, we describe the development and testing of firmware embedded in a wearable device in conjunction with a user-based software system that records and analyses a patient's gait. The movement patterns, expressed as quantitative data, allow clinicians to improve the non-invasive assessment of iNPH as well as monitor the management of patients undergoing treatment. The wearable sensor system comprises a miniature electronic unit that attaches to one ankle of the patient via a simple Velcro strap which was designed for this application. The unit monitors acceleration along three axes with a sample rate of 60 Hz and transmits the data via a Bluetooth communication link to a tablet or smart phone running the Android and the iOS operating systems. The software package extracts statistics based on stride length, stride height, distance walked and speed. Analysis confirmed that the system achieved an average accuracy of at least 98% for gait tests conducted over distances 9 m. This device has been developed to assist in the management and treatment of older adults diagnosed with iNPH.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信