{"title":"在活体单细胞成像实验中监测 Chk1 激酶的活性动态。","authors":"Vivianne Lebrec, Olivier Gavet","doi":"10.1016/bs.mcb.2022.12.018","DOIUrl":null,"url":null,"abstract":"<p><p>The ATR/Chk1 pathway is an important regulator of cell cycle progression, notably upon genotoxic stress where it can detect a large variety of DNA alterations and induce a transient cell cycle arrest that promotes DNA repair. In addition to its role in DNA damage response (DDR), Chk1 is also active during a non-perturbed S phase and contributes to prevent a premature entry into mitosis with an incompletely replicated genome, meaning the ATR/Chk1 pathway is an integral part of the cell cycle machinery that preserves genome integrity during cell growth. We recently developed a FRET-based Chk1 kinase activity reporter to directly monitor and quantify the kinetics of Chk1 activation in live single cell imaging assays with unprecedented sensitivity and time resolution. This tool allowed us to monitor Chk1 activity dynamics over time during a normal S phase and following genotoxic stress, and to elucidate the underlying mechanisms leading to its activation. Here, we review available fluorescent tools to study the interplay of cell cycle progression, DNA damage and DDR in individual live cells, and present the full protocol and image analysis pipeline to monitor Chk1 activity in two imaging assays.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring Chk1 kinase activity dynamics in live single cell imaging assays.\",\"authors\":\"Vivianne Lebrec, Olivier Gavet\",\"doi\":\"10.1016/bs.mcb.2022.12.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ATR/Chk1 pathway is an important regulator of cell cycle progression, notably upon genotoxic stress where it can detect a large variety of DNA alterations and induce a transient cell cycle arrest that promotes DNA repair. In addition to its role in DNA damage response (DDR), Chk1 is also active during a non-perturbed S phase and contributes to prevent a premature entry into mitosis with an incompletely replicated genome, meaning the ATR/Chk1 pathway is an integral part of the cell cycle machinery that preserves genome integrity during cell growth. We recently developed a FRET-based Chk1 kinase activity reporter to directly monitor and quantify the kinetics of Chk1 activation in live single cell imaging assays with unprecedented sensitivity and time resolution. This tool allowed us to monitor Chk1 activity dynamics over time during a normal S phase and following genotoxic stress, and to elucidate the underlying mechanisms leading to its activation. Here, we review available fluorescent tools to study the interplay of cell cycle progression, DNA damage and DDR in individual live cells, and present the full protocol and image analysis pipeline to monitor Chk1 activity in two imaging assays.</p>\",\"PeriodicalId\":18437,\"journal\":{\"name\":\"Methods in cell biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in cell biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mcb.2022.12.018\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2022.12.018","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
摘要
ATR/Chk1 通路是细胞周期进展的重要调节因子,尤其是在基因毒性应激时,它可以检测到大量 DNA 改变,并诱导细胞周期短暂停滞,从而促进 DNA 修复。除了在DNA损伤应答(DDR)中的作用外,Chk1在未受干扰的S期也很活跃,有助于防止基因组在未完全复制的情况下过早进入有丝分裂,这意味着ATR/Chk1通路是细胞生长过程中维护基因组完整性的细胞周期机制的一个组成部分。我们最近开发了一种基于 FRET 的 Chk1 激酶活性报告器,可以在活体单细胞成像实验中以前所未有的灵敏度和时间分辨率直接监测和量化 Chk1 激活的动力学。这一工具使我们能够监测正常 S 期和基因毒性应激后 Chk1 活性的动态变化,并阐明导致其活化的潜在机制。在这里,我们回顾了研究单个活细胞中细胞周期进展、DNA 损伤和 DDR 相互作用的可用荧光工具,并介绍了在两种成像测定中监测 Chk1 活性的完整方案和图像分析管道。
Monitoring Chk1 kinase activity dynamics in live single cell imaging assays.
The ATR/Chk1 pathway is an important regulator of cell cycle progression, notably upon genotoxic stress where it can detect a large variety of DNA alterations and induce a transient cell cycle arrest that promotes DNA repair. In addition to its role in DNA damage response (DDR), Chk1 is also active during a non-perturbed S phase and contributes to prevent a premature entry into mitosis with an incompletely replicated genome, meaning the ATR/Chk1 pathway is an integral part of the cell cycle machinery that preserves genome integrity during cell growth. We recently developed a FRET-based Chk1 kinase activity reporter to directly monitor and quantify the kinetics of Chk1 activation in live single cell imaging assays with unprecedented sensitivity and time resolution. This tool allowed us to monitor Chk1 activity dynamics over time during a normal S phase and following genotoxic stress, and to elucidate the underlying mechanisms leading to its activation. Here, we review available fluorescent tools to study the interplay of cell cycle progression, DNA damage and DDR in individual live cells, and present the full protocol and image analysis pipeline to monitor Chk1 activity in two imaging assays.
期刊介绍:
For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.