Annette Baumstark, Stefan Pleus, Jochen Mende, Nina Jendrike, Martina Tesar, Sebastian Schauer, Takayuki Sugiyama, Takashi Aoki, Mako Sugiura, Guido Freckmann, Cornelia Haug
{"title":"研究 70 种潜在干扰因素对两种血糖监测系统测量结果的影响。","authors":"Annette Baumstark, Stefan Pleus, Jochen Mende, Nina Jendrike, Martina Tesar, Sebastian Schauer, Takayuki Sugiyama, Takashi Aoki, Mako Sugiura, Guido Freckmann, Cornelia Haug","doi":"10.1177/19322968241231294","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Reliable blood glucose (BG) measurements are important for people with diabetes to manage their therapy as well as in point-of-care testing (POCT) performed by health care professionals to monitor BG of patients or even to diagnose diabetes. Among other factors, endogenous and exogenous substances present in blood samples can impact the measurement results. To ensure and prove that blood glucose monitoring systems (BGMSs) are robust in terms of potential interferents, manufacturers have to perform extensive evaluations.</p><p><strong>Method: </strong>An interference screening test was performed for three reagent system lots of a POCT system and of a BGMS for self-monitoring of BG. A paired-difference approach based on ISO 15197:2013 and CLSI guideline EP07 was used with venous whole blood samples at two different glucose concentrations. Seventy potential interferents expected to be common in people with diabetes were evaluated.</p><p><strong>Results: </strong>The interference effects were determined as normalized biases between test samples and corresponding control samples. For 69 of the 70 investigated potential interferents, both systems met the predefined acceptance criteria, with the normalized biases falling within ±10 mg/dL or ±10% at glucose concentrations ≤100 mg/dL or >100 mg/dL, respectively, for each of the three evaluated reagent system lots.</p><p><strong>Conclusions: </strong>The BGMS investigated in this study were found to be robust with respect to the 70 evaluated potential interferents. Interference effects were observed only for N-Acetyl-L-cysteine. Extensive evaluations of potential interfering factors can make an important contribution to ensure reliability of BGMS.</p>","PeriodicalId":15475,"journal":{"name":"Journal of Diabetes Science and Technology","volume":" ","pages":"971-981"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571370/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Effect of 70 Potential Interferents on Measurement Results of Two Blood Glucose Monitoring Systems.\",\"authors\":\"Annette Baumstark, Stefan Pleus, Jochen Mende, Nina Jendrike, Martina Tesar, Sebastian Schauer, Takayuki Sugiyama, Takashi Aoki, Mako Sugiura, Guido Freckmann, Cornelia Haug\",\"doi\":\"10.1177/19322968241231294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Reliable blood glucose (BG) measurements are important for people with diabetes to manage their therapy as well as in point-of-care testing (POCT) performed by health care professionals to monitor BG of patients or even to diagnose diabetes. Among other factors, endogenous and exogenous substances present in blood samples can impact the measurement results. To ensure and prove that blood glucose monitoring systems (BGMSs) are robust in terms of potential interferents, manufacturers have to perform extensive evaluations.</p><p><strong>Method: </strong>An interference screening test was performed for three reagent system lots of a POCT system and of a BGMS for self-monitoring of BG. A paired-difference approach based on ISO 15197:2013 and CLSI guideline EP07 was used with venous whole blood samples at two different glucose concentrations. Seventy potential interferents expected to be common in people with diabetes were evaluated.</p><p><strong>Results: </strong>The interference effects were determined as normalized biases between test samples and corresponding control samples. For 69 of the 70 investigated potential interferents, both systems met the predefined acceptance criteria, with the normalized biases falling within ±10 mg/dL or ±10% at glucose concentrations ≤100 mg/dL or >100 mg/dL, respectively, for each of the three evaluated reagent system lots.</p><p><strong>Conclusions: </strong>The BGMS investigated in this study were found to be robust with respect to the 70 evaluated potential interferents. Interference effects were observed only for N-Acetyl-L-cysteine. Extensive evaluations of potential interfering factors can make an important contribution to ensure reliability of BGMS.</p>\",\"PeriodicalId\":15475,\"journal\":{\"name\":\"Journal of Diabetes Science and Technology\",\"volume\":\" \",\"pages\":\"971-981\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571370/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Diabetes Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/19322968241231294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19322968241231294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Investigation of the Effect of 70 Potential Interferents on Measurement Results of Two Blood Glucose Monitoring Systems.
Background: Reliable blood glucose (BG) measurements are important for people with diabetes to manage their therapy as well as in point-of-care testing (POCT) performed by health care professionals to monitor BG of patients or even to diagnose diabetes. Among other factors, endogenous and exogenous substances present in blood samples can impact the measurement results. To ensure and prove that blood glucose monitoring systems (BGMSs) are robust in terms of potential interferents, manufacturers have to perform extensive evaluations.
Method: An interference screening test was performed for three reagent system lots of a POCT system and of a BGMS for self-monitoring of BG. A paired-difference approach based on ISO 15197:2013 and CLSI guideline EP07 was used with venous whole blood samples at two different glucose concentrations. Seventy potential interferents expected to be common in people with diabetes were evaluated.
Results: The interference effects were determined as normalized biases between test samples and corresponding control samples. For 69 of the 70 investigated potential interferents, both systems met the predefined acceptance criteria, with the normalized biases falling within ±10 mg/dL or ±10% at glucose concentrations ≤100 mg/dL or >100 mg/dL, respectively, for each of the three evaluated reagent system lots.
Conclusions: The BGMS investigated in this study were found to be robust with respect to the 70 evaluated potential interferents. Interference effects were observed only for N-Acetyl-L-cysteine. Extensive evaluations of potential interfering factors can make an important contribution to ensure reliability of BGMS.
期刊介绍:
The Journal of Diabetes Science and Technology (JDST) is a bi-monthly, peer-reviewed scientific journal published by the Diabetes Technology Society. JDST covers scientific and clinical aspects of diabetes technology including glucose monitoring, insulin and metabolic peptide delivery, the artificial pancreas, digital health, precision medicine, social media, cybersecurity, software for modeling, physiologic monitoring, technology for managing obesity, and diagnostic tests of glycation. The journal also covers the development and use of mobile applications and wireless communication, as well as bioengineered tools such as MEMS, new biomaterials, and nanotechnology to develop new sensors. Articles in JDST cover both basic research and clinical applications of technologies being developed to help people with diabetes.