缺氧环境中的蛋白质聚集和生物分子凝结(综述)。

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
International journal of molecular medicine Pub Date : 2024-04-01 Epub Date: 2024-02-16 DOI:10.3892/ijmm.2024.5357
Chaoqun Li, Bingjie Hao, Haiguang Yang, Kai Wang, Lihong Fan, Weihua Xiao
{"title":"缺氧环境中的蛋白质聚集和生物分子凝结(综述)。","authors":"Chaoqun Li, Bingjie Hao, Haiguang Yang, Kai Wang, Lihong Fan, Weihua Xiao","doi":"10.3892/ijmm.2024.5357","DOIUrl":null,"url":null,"abstract":"<p><p>Due to molecular forces, biomacromolecules assemble into liquid condensates or solid aggregates, and their corresponding formation and dissolution processes are controlled. Protein homeostasis is disrupted by increasing age or environmental stress, leading to irreversible protein aggregation. Hypoxic pressure is an important factor in this process, and uncontrolled protein aggregation has been widely observed in hypoxia‑related conditions such as neurodegenerative disease, cardiovascular disease, hypoxic brain injury and cancer. Biomolecular condensates are also high‑order complexes assembled from macromolecules. Although they exist in different phase from protein aggregates, they are in dynamic balance under certain conditions, and their activation or assembly are considered as important regulatory processes in cell survival with hypoxic pressure. Therefore, a better understanding of the relationship between hypoxic stress, protein aggregation and biomolecular condensation will bring marked benefits in the clinical treatment of various diseases. The aim of the present review was to summarize the underlying mechanisms of aggregate assembly and dissolution induced by hypoxic conditions, and address recent breakthroughs in understanding the role of aggregates in hypoxic‑related diseases, given the hypotheses that hypoxia induces macromolecular assemblage changes from a liquid to a solid phase, and that adenosine triphosphate depletion and ATP‑driven inactivation of multiple protein chaperones play important roles among the process. Moreover, it is anticipated that an improved understanding of the adaptation in hypoxic environments could extend the overall survival of patients and provide new strategies for hypoxic‑related diseases.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903932/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protein aggregation and biomolecular condensation in hypoxic environments (Review).\",\"authors\":\"Chaoqun Li, Bingjie Hao, Haiguang Yang, Kai Wang, Lihong Fan, Weihua Xiao\",\"doi\":\"10.3892/ijmm.2024.5357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to molecular forces, biomacromolecules assemble into liquid condensates or solid aggregates, and their corresponding formation and dissolution processes are controlled. Protein homeostasis is disrupted by increasing age or environmental stress, leading to irreversible protein aggregation. Hypoxic pressure is an important factor in this process, and uncontrolled protein aggregation has been widely observed in hypoxia‑related conditions such as neurodegenerative disease, cardiovascular disease, hypoxic brain injury and cancer. Biomolecular condensates are also high‑order complexes assembled from macromolecules. Although they exist in different phase from protein aggregates, they are in dynamic balance under certain conditions, and their activation or assembly are considered as important regulatory processes in cell survival with hypoxic pressure. Therefore, a better understanding of the relationship between hypoxic stress, protein aggregation and biomolecular condensation will bring marked benefits in the clinical treatment of various diseases. The aim of the present review was to summarize the underlying mechanisms of aggregate assembly and dissolution induced by hypoxic conditions, and address recent breakthroughs in understanding the role of aggregates in hypoxic‑related diseases, given the hypotheses that hypoxia induces macromolecular assemblage changes from a liquid to a solid phase, and that adenosine triphosphate depletion and ATP‑driven inactivation of multiple protein chaperones play important roles among the process. Moreover, it is anticipated that an improved understanding of the adaptation in hypoxic environments could extend the overall survival of patients and provide new strategies for hypoxic‑related diseases.</p>\",\"PeriodicalId\":14086,\"journal\":{\"name\":\"International journal of molecular medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903932/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/ijmm.2024.5357\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2024.5357","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

在分子力的作用下,生物大分子会聚集成液态凝聚体或固态聚集体,并控制其相应的形成和溶解过程。随着年龄的增长或环境压力的增加,蛋白质的平衡会被打破,从而导致不可逆的蛋白质聚集。缺氧压力是这一过程中的一个重要因素,在神经退行性疾病、心血管疾病、缺氧性脑损伤和癌症等与缺氧有关的疾病中,已广泛观察到不受控制的蛋白质聚集。生物分子凝聚体也是由大分子组装而成的高阶复合物。虽然它们与蛋白质聚集体的存在阶段不同,但在特定条件下它们处于动态平衡状态,它们的激活或组装被认为是细胞在缺氧压力下生存的重要调节过程。因此,更好地理解缺氧压力、蛋白质聚集和生物分子凝结之间的关系,将为各种疾病的临床治疗带来显著的益处。本综述旨在总结缺氧条件下诱导的聚集体组装和溶解的基本机制,并探讨最近在理解聚集体在缺氧相关疾病中的作用方面取得的突破,其假说是缺氧诱导大分子组装从液相变为固相,而三磷酸腺苷耗竭和 ATP 驱动的多种蛋白伴侣失活在这一过程中发挥了重要作用。此外,对缺氧环境适应性的进一步了解有望延长患者的总体生存期,并为缺氧相关疾病的治疗提供新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protein aggregation and biomolecular condensation in hypoxic environments (Review).

Due to molecular forces, biomacromolecules assemble into liquid condensates or solid aggregates, and their corresponding formation and dissolution processes are controlled. Protein homeostasis is disrupted by increasing age or environmental stress, leading to irreversible protein aggregation. Hypoxic pressure is an important factor in this process, and uncontrolled protein aggregation has been widely observed in hypoxia‑related conditions such as neurodegenerative disease, cardiovascular disease, hypoxic brain injury and cancer. Biomolecular condensates are also high‑order complexes assembled from macromolecules. Although they exist in different phase from protein aggregates, they are in dynamic balance under certain conditions, and their activation or assembly are considered as important regulatory processes in cell survival with hypoxic pressure. Therefore, a better understanding of the relationship between hypoxic stress, protein aggregation and biomolecular condensation will bring marked benefits in the clinical treatment of various diseases. The aim of the present review was to summarize the underlying mechanisms of aggregate assembly and dissolution induced by hypoxic conditions, and address recent breakthroughs in understanding the role of aggregates in hypoxic‑related diseases, given the hypotheses that hypoxia induces macromolecular assemblage changes from a liquid to a solid phase, and that adenosine triphosphate depletion and ATP‑driven inactivation of multiple protein chaperones play important roles among the process. Moreover, it is anticipated that an improved understanding of the adaptation in hypoxic environments could extend the overall survival of patients and provide new strategies for hypoxic‑related diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of molecular medicine
International journal of molecular medicine 医学-医学:研究与实验
CiteScore
12.30
自引率
0.00%
发文量
124
审稿时长
3 months
期刊介绍: The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality. The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research. All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信