{"title":"计算模型是研究氧化还原系统的催化剂。","authors":"Ché S Pillay, Johann M Rohwer","doi":"10.1042/EBC20230036","DOIUrl":null,"url":null,"abstract":"<p><p>Thioredoxin, glutaredoxin and peroxiredoxin systems play central roles in redox regulation, signaling and metabolism in cells. In these systems, reducing equivalents from NAD(P)H are transferred by coupled thiol-disulfide exchange reactions to redoxins which then reduce a wide array of targets. However, the characterization of redoxin activity has been unclear, with redoxins regarded as enzymes in some studies and redox metabolites in others. Consequently, redoxin activities have been quantified by enzyme kinetic parameters in vitro, and redox potentials or redox ratios within cells. By analyzing all the reactions within these systems, computational models showed that many kinetic properties attributed to redoxins were due to system-level effects. Models of cellular redoxin networks have also been used to estimate intracellular hydrogen peroxide levels, analyze redox signaling and couple omic and kinetic data to understand the regulation of these networks in disease. Computational modeling has emerged as a powerful complementary tool to traditional redoxin enzyme kinetic and cellular assays that integrates data from a number of sources into a single quantitative framework to accelerate the analysis of redoxin systems.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"27-39"},"PeriodicalIF":5.6000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational models as catalysts for investigating redoxin systems.\",\"authors\":\"Ché S Pillay, Johann M Rohwer\",\"doi\":\"10.1042/EBC20230036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thioredoxin, glutaredoxin and peroxiredoxin systems play central roles in redox regulation, signaling and metabolism in cells. In these systems, reducing equivalents from NAD(P)H are transferred by coupled thiol-disulfide exchange reactions to redoxins which then reduce a wide array of targets. However, the characterization of redoxin activity has been unclear, with redoxins regarded as enzymes in some studies and redox metabolites in others. Consequently, redoxin activities have been quantified by enzyme kinetic parameters in vitro, and redox potentials or redox ratios within cells. By analyzing all the reactions within these systems, computational models showed that many kinetic properties attributed to redoxins were due to system-level effects. Models of cellular redoxin networks have also been used to estimate intracellular hydrogen peroxide levels, analyze redox signaling and couple omic and kinetic data to understand the regulation of these networks in disease. Computational modeling has emerged as a powerful complementary tool to traditional redoxin enzyme kinetic and cellular assays that integrates data from a number of sources into a single quantitative framework to accelerate the analysis of redoxin systems.</p>\",\"PeriodicalId\":11812,\"journal\":{\"name\":\"Essays in biochemistry\",\"volume\":\" \",\"pages\":\"27-39\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Essays in biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/EBC20230036\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essays in biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/EBC20230036","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Computational models as catalysts for investigating redoxin systems.
Thioredoxin, glutaredoxin and peroxiredoxin systems play central roles in redox regulation, signaling and metabolism in cells. In these systems, reducing equivalents from NAD(P)H are transferred by coupled thiol-disulfide exchange reactions to redoxins which then reduce a wide array of targets. However, the characterization of redoxin activity has been unclear, with redoxins regarded as enzymes in some studies and redox metabolites in others. Consequently, redoxin activities have been quantified by enzyme kinetic parameters in vitro, and redox potentials or redox ratios within cells. By analyzing all the reactions within these systems, computational models showed that many kinetic properties attributed to redoxins were due to system-level effects. Models of cellular redoxin networks have also been used to estimate intracellular hydrogen peroxide levels, analyze redox signaling and couple omic and kinetic data to understand the regulation of these networks in disease. Computational modeling has emerged as a powerful complementary tool to traditional redoxin enzyme kinetic and cellular assays that integrates data from a number of sources into a single quantitative framework to accelerate the analysis of redoxin systems.
期刊介绍:
Essays in Biochemistry publishes short, digestible reviews from experts highlighting recent key topics in biochemistry and the molecular biosciences. Written to be accessible for those not yet immersed in the subject, each article is an up-to-date, self-contained summary of the topic.
Bridging the gap between the latest research and established textbooks, Essays in Biochemistry will tell you what you need to know to begin exploring the field, as each article includes the top take-home messages as summary points.
Each issue of the journal is guest edited by a key opinion leader in the area, and whether you are continuing your studies or moving into a new research area, the Journal gives a complete picture in one place.
Essays in Biochemistry is proud to publish Understanding Biochemistry, an essential online resource for post-16 students, teachers and undergraduates. Providing up-to-date overviews of key concepts in biochemistry and the molecular biosciences, the Understanding Biochemistry issues of Essays in Biochemistry are published annually in October.