Richard H. Bamler, Charles Cifarelli, Ronan J. Conlon, Alix Deruelle
{"title":"一种新的完整二维收缩梯度凯勒-里奇孤子","authors":"Richard H. Bamler, Charles Cifarelli, Ronan J. Conlon, Alix Deruelle","doi":"10.1007/s00039-024-00668-9","DOIUrl":null,"url":null,"abstract":"<p>We prove the existence of a unique complete shrinking gradient Kähler-Ricci soliton with bounded scalar curvature on the blowup of <span>\\(\\mathbb{C}\\times \\mathbb{P}^{1}\\)</span> at one point. This completes the classification of such solitons in two complex dimensions.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"156 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Complete Two-Dimensional Shrinking Gradient Kähler-Ricci Soliton\",\"authors\":\"Richard H. Bamler, Charles Cifarelli, Ronan J. Conlon, Alix Deruelle\",\"doi\":\"10.1007/s00039-024-00668-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the existence of a unique complete shrinking gradient Kähler-Ricci soliton with bounded scalar curvature on the blowup of <span>\\\\(\\\\mathbb{C}\\\\times \\\\mathbb{P}^{1}\\\\)</span> at one point. This completes the classification of such solitons in two complex dimensions.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"156 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00668-9\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00668-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A New Complete Two-Dimensional Shrinking Gradient Kähler-Ricci Soliton
We prove the existence of a unique complete shrinking gradient Kähler-Ricci soliton with bounded scalar curvature on the blowup of \(\mathbb{C}\times \mathbb{P}^{1}\) at one point. This completes the classification of such solitons in two complex dimensions.
期刊介绍:
Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis.
GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016.
Publishes major results on topics in geometry and analysis.
Features papers which make connections between relevant fields and their applications to other areas.