{"title":"同源性增长、超布尔化和纤维化","authors":"Grigori Avramidi, Boris Okun, Kevin Schreve","doi":"10.1007/s00039-024-00667-w","DOIUrl":null,"url":null,"abstract":"<p>We introduce a hyperbolic reflection group trick which builds closed aspherical manifolds out of compact ones and preserves hyperbolicity, residual finiteness, and—for almost all primes <i>p</i>—<span>\\(\\mathbb{F} _{p}\\)</span>-homology growth above the middle dimension. We use this trick, embedding theory and manifold topology to construct Gromov hyperbolic 7-manifolds that do not virtually fiber over a circle out of graph products of large finite groups.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homology Growth, Hyperbolization, and Fibering\",\"authors\":\"Grigori Avramidi, Boris Okun, Kevin Schreve\",\"doi\":\"10.1007/s00039-024-00667-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a hyperbolic reflection group trick which builds closed aspherical manifolds out of compact ones and preserves hyperbolicity, residual finiteness, and—for almost all primes <i>p</i>—<span>\\\\(\\\\mathbb{F} _{p}\\\\)</span>-homology growth above the middle dimension. We use this trick, embedding theory and manifold topology to construct Gromov hyperbolic 7-manifolds that do not virtually fiber over a circle out of graph products of large finite groups.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00667-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00667-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
We introduce a hyperbolic reflection group trick which builds closed aspherical manifolds out of compact ones and preserves hyperbolicity, residual finiteness, and—for almost all primes p—\(\mathbb{F} _{p}\)-homology growth above the middle dimension. We use this trick, embedding theory and manifold topology to construct Gromov hyperbolic 7-manifolds that do not virtually fiber over a circle out of graph products of large finite groups.