同源性增长、超布尔化和纤维化

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Grigori Avramidi, Boris Okun, Kevin Schreve
{"title":"同源性增长、超布尔化和纤维化","authors":"Grigori Avramidi, Boris Okun, Kevin Schreve","doi":"10.1007/s00039-024-00667-w","DOIUrl":null,"url":null,"abstract":"<p>We introduce a hyperbolic reflection group trick which builds closed aspherical manifolds out of compact ones and preserves hyperbolicity, residual finiteness, and—for almost all primes <i>p</i>—<span>\\(\\mathbb{F} _{p}\\)</span>-homology growth above the middle dimension. We use this trick, embedding theory and manifold topology to construct Gromov hyperbolic 7-manifolds that do not virtually fiber over a circle out of graph products of large finite groups.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homology Growth, Hyperbolization, and Fibering\",\"authors\":\"Grigori Avramidi, Boris Okun, Kevin Schreve\",\"doi\":\"10.1007/s00039-024-00667-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a hyperbolic reflection group trick which builds closed aspherical manifolds out of compact ones and preserves hyperbolicity, residual finiteness, and—for almost all primes <i>p</i>—<span>\\\\(\\\\mathbb{F} _{p}\\\\)</span>-homology growth above the middle dimension. We use this trick, embedding theory and manifold topology to construct Gromov hyperbolic 7-manifolds that do not virtually fiber over a circle out of graph products of large finite groups.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00667-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00667-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种双曲反射群技巧,它可以从紧凑流形中构建封闭非球面流形,并保留双曲性、残余有限性,以及对于几乎所有素数p-(\mathbb{F} _{p}\)-高于中维的同调增长。我们利用这个技巧、嵌入理论和流形拓扑学来构造格罗莫夫双曲 7-manifolds,这些 7-manifolds不会从大有限群的图积中虚拟地纤维到圆上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Homology Growth, Hyperbolization, and Fibering

Homology Growth, Hyperbolization, and Fibering

We introduce a hyperbolic reflection group trick which builds closed aspherical manifolds out of compact ones and preserves hyperbolicity, residual finiteness, and—for almost all primes p\(\mathbb{F} _{p}\)-homology growth above the middle dimension. We use this trick, embedding theory and manifold topology to construct Gromov hyperbolic 7-manifolds that do not virtually fiber over a circle out of graph products of large finite groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信