A V Sulimov, I S Ilin, A S Tashchilova, O A Kondakova, D C Kutov, V B Sulimov
{"title":"针对 SARS-CoV-2 的药物设计中的对接和其他计算工具。","authors":"A V Sulimov, I S Ilin, A S Tashchilova, O A Kondakova, D C Kutov, V B Sulimov","doi":"10.1080/1062936X.2024.2306336","DOIUrl":null,"url":null,"abstract":"<p><p>The use of computer simulation methods has become an indispensable component in identifying drugs against the SARS-CoV-2 coronavirus. There is a huge body of literature on application of molecular modelling to predict inhibitors against target proteins of SARS-CoV-2. To keep our review clear and readable, we limited ourselves primarily to works that use computational methods to find inhibitors and test the predicted compounds experimentally either in target protein assays or in cell culture with live SARS-CoV-2. Some works containing results of experimental discovery of corresponding inhibitors without using computer modelling are included as examples of a success. Also, some computational works without experimental confirmations are also included if they attract our attention either by simulation methods or by databases used. This review collects studies that use various molecular modelling methods: docking, molecular dynamics, quantum mechanics, machine learning, and others. Most of these studies are based on docking, and other methods are used mainly for post-processing to select the best compounds among those found through docking. Simulation methods are presented concisely, information is also provided on databases of organic compounds that can be useful for virtual screening, and the review itself is structured in accordance with coronavirus target proteins.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"35 2","pages":"91-136"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Docking and other computing tools in drug design against SARS-CoV-2.\",\"authors\":\"A V Sulimov, I S Ilin, A S Tashchilova, O A Kondakova, D C Kutov, V B Sulimov\",\"doi\":\"10.1080/1062936X.2024.2306336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of computer simulation methods has become an indispensable component in identifying drugs against the SARS-CoV-2 coronavirus. There is a huge body of literature on application of molecular modelling to predict inhibitors against target proteins of SARS-CoV-2. To keep our review clear and readable, we limited ourselves primarily to works that use computational methods to find inhibitors and test the predicted compounds experimentally either in target protein assays or in cell culture with live SARS-CoV-2. Some works containing results of experimental discovery of corresponding inhibitors without using computer modelling are included as examples of a success. Also, some computational works without experimental confirmations are also included if they attract our attention either by simulation methods or by databases used. This review collects studies that use various molecular modelling methods: docking, molecular dynamics, quantum mechanics, machine learning, and others. Most of these studies are based on docking, and other methods are used mainly for post-processing to select the best compounds among those found through docking. Simulation methods are presented concisely, information is also provided on databases of organic compounds that can be useful for virtual screening, and the review itself is structured in accordance with coronavirus target proteins.</p>\",\"PeriodicalId\":21446,\"journal\":{\"name\":\"SAR and QSAR in Environmental Research\",\"volume\":\"35 2\",\"pages\":\"91-136\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAR and QSAR in Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1062936X.2024.2306336\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2024.2306336","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Docking and other computing tools in drug design against SARS-CoV-2.
The use of computer simulation methods has become an indispensable component in identifying drugs against the SARS-CoV-2 coronavirus. There is a huge body of literature on application of molecular modelling to predict inhibitors against target proteins of SARS-CoV-2. To keep our review clear and readable, we limited ourselves primarily to works that use computational methods to find inhibitors and test the predicted compounds experimentally either in target protein assays or in cell culture with live SARS-CoV-2. Some works containing results of experimental discovery of corresponding inhibitors without using computer modelling are included as examples of a success. Also, some computational works without experimental confirmations are also included if they attract our attention either by simulation methods or by databases used. This review collects studies that use various molecular modelling methods: docking, molecular dynamics, quantum mechanics, machine learning, and others. Most of these studies are based on docking, and other methods are used mainly for post-processing to select the best compounds among those found through docking. Simulation methods are presented concisely, information is also provided on databases of organic compounds that can be useful for virtual screening, and the review itself is structured in accordance with coronavirus target proteins.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.