嗜茧动物 Gephyrocapsa oceanica 在茧石形成过程中对晶体生长的控制。

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Alexander Triccas , Fraser Laidlaw , Martin R. Singleton , Fabio Nudelman
{"title":"嗜茧动物 Gephyrocapsa oceanica 在茧石形成过程中对晶体生长的控制。","authors":"Alexander Triccas ,&nbsp;Fraser Laidlaw ,&nbsp;Martin R. Singleton ,&nbsp;Fabio Nudelman","doi":"10.1016/j.jsb.2024.108066","DOIUrl":null,"url":null,"abstract":"<div><p>Coccolithophores are marine phytoplankton that produce calcite mineral scales called coccoliths. Many stages in the synthesis of these structures are still unresolved, making it difficult to accurately quantify the energetic costs involved in calcification, required to determine the response coccolith mineralization will have to rising ocean acidification and temperature created by an increase in global CO2 concentrations. To clarify this, an improved understanding of how coccolithophores control the fundamental processes of crystallization, including nucleation, growth, and morphology, is needed. Here, we study how crystal growth and morphology is controlled in the coccolithophore <em>Gephyrocapsa oceanica</em> by imaging coccoliths at various stages of maturity using cryo-transmission electron microscopy (cryoTEM), scanning electron microscopy (SEM) and focused ion beam SEM (FIB-SEM). We reveal that coccolith units tightly interlock with each other due to the non-vertical alignment of the two-layered tube element, causing these mineral units to extend over the adjacent crystals. In specific directions, the growth of the coccolith tube seems to be impacted by the physical constraint created by the close association of neighbouring units around the ring, influencing the overall morphology and organization of the crystals that develop. Our findings contribute to the overall understanding of how biological systems can manipulate crystallization to produce functional mineralized tissues.</p></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1047847724000066/pdfft?md5=e650e944fc9dfcf785c724a2072652d9&pid=1-s2.0-S1047847724000066-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Control of crystal growth during coccolith formation by the coccolithophore Gephyrocapsa oceanica\",\"authors\":\"Alexander Triccas ,&nbsp;Fraser Laidlaw ,&nbsp;Martin R. Singleton ,&nbsp;Fabio Nudelman\",\"doi\":\"10.1016/j.jsb.2024.108066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Coccolithophores are marine phytoplankton that produce calcite mineral scales called coccoliths. Many stages in the synthesis of these structures are still unresolved, making it difficult to accurately quantify the energetic costs involved in calcification, required to determine the response coccolith mineralization will have to rising ocean acidification and temperature created by an increase in global CO2 concentrations. To clarify this, an improved understanding of how coccolithophores control the fundamental processes of crystallization, including nucleation, growth, and morphology, is needed. Here, we study how crystal growth and morphology is controlled in the coccolithophore <em>Gephyrocapsa oceanica</em> by imaging coccoliths at various stages of maturity using cryo-transmission electron microscopy (cryoTEM), scanning electron microscopy (SEM) and focused ion beam SEM (FIB-SEM). We reveal that coccolith units tightly interlock with each other due to the non-vertical alignment of the two-layered tube element, causing these mineral units to extend over the adjacent crystals. In specific directions, the growth of the coccolith tube seems to be impacted by the physical constraint created by the close association of neighbouring units around the ring, influencing the overall morphology and organization of the crystals that develop. Our findings contribute to the overall understanding of how biological systems can manipulate crystallization to produce functional mineralized tissues.</p></div>\",\"PeriodicalId\":17074,\"journal\":{\"name\":\"Journal of structural biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1047847724000066/pdfft?md5=e650e944fc9dfcf785c724a2072652d9&pid=1-s2.0-S1047847724000066-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047847724000066\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847724000066","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

球石藻是一种海洋浮游植物,能产生称为球石的方解石矿物鳞片。这些结构合成过程中的许多阶段仍未得到解决,因此很难准确量化钙化过程中的能量成本,而这正是确定钙钛矿化对全球二氧化碳浓度升高导致的海洋酸化和温度升高的反应所必需的。为了澄清这一点,需要进一步了解茧石藻类如何控制结晶的基本过程,包括成核、生长和形态。在这里,我们利用低温透射电子显微镜(cryoTEM)、扫描电子显微镜(SEM)和聚焦离子束扫描电子显微镜(FIB-SEM),通过对不同成熟阶段的茧石成像,研究了鹅膏藻 Gephyrocapsa oceanica 是如何控制晶体生长和形态的。我们发现,由于双层管元素的非垂直排列,茧石单元之间紧密交错,导致这些矿物单元延伸到相邻晶体之上。在特定方向上,茧石管的生长似乎受到环周围相邻单元紧密结合所产生的物理约束的影响,从而影响了晶体的整体形态和组织结构。我们的发现有助于全面了解生物系统如何操纵结晶以产生功能性矿化组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Control of crystal growth during coccolith formation by the coccolithophore Gephyrocapsa oceanica

Control of crystal growth during coccolith formation by the coccolithophore Gephyrocapsa oceanica

Coccolithophores are marine phytoplankton that produce calcite mineral scales called coccoliths. Many stages in the synthesis of these structures are still unresolved, making it difficult to accurately quantify the energetic costs involved in calcification, required to determine the response coccolith mineralization will have to rising ocean acidification and temperature created by an increase in global CO2 concentrations. To clarify this, an improved understanding of how coccolithophores control the fundamental processes of crystallization, including nucleation, growth, and morphology, is needed. Here, we study how crystal growth and morphology is controlled in the coccolithophore Gephyrocapsa oceanica by imaging coccoliths at various stages of maturity using cryo-transmission electron microscopy (cryoTEM), scanning electron microscopy (SEM) and focused ion beam SEM (FIB-SEM). We reveal that coccolith units tightly interlock with each other due to the non-vertical alignment of the two-layered tube element, causing these mineral units to extend over the adjacent crystals. In specific directions, the growth of the coccolith tube seems to be impacted by the physical constraint created by the close association of neighbouring units around the ring, influencing the overall morphology and organization of the crystals that develop. Our findings contribute to the overall understanding of how biological systems can manipulate crystallization to produce functional mineralized tissues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of structural biology
Journal of structural biology 生物-生化与分子生物学
CiteScore
6.30
自引率
3.30%
发文量
88
审稿时长
65 days
期刊介绍: Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure. Techniques covered include: • Light microscopy including confocal microscopy • All types of electron microscopy • X-ray diffraction • Nuclear magnetic resonance • Scanning force microscopy, scanning probe microscopy, and tunneling microscopy • Digital image processing • Computational insights into structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信