神经网络预测热机械控制加工对机械性能的影响

Sushant Sinha , Denzel Guye , Xiaoping Ma , Kashif Rehman , Stephen Yue , Narges Armanfard
{"title":"神经网络预测热机械控制加工对机械性能的影响","authors":"Sushant Sinha ,&nbsp;Denzel Guye ,&nbsp;Xiaoping Ma ,&nbsp;Kashif Rehman ,&nbsp;Stephen Yue ,&nbsp;Narges Armanfard","doi":"10.1016/j.mlwa.2024.100531","DOIUrl":null,"url":null,"abstract":"<div><p>The as-rolled mechanical properties of microalloyed steels result from their chemical composition and thermomechanical processing history. Accurate predictions of the mechanical properties would reduce the need for expensive and time-consuming testing. At the same time, understanding the interplay between process variables and alloy composition will help reduce product variability and facilitate future alloy design. This paper provides an artificial neural network methodology to predict lower yield strength (LYS) and ultimate tensile strength (UTS). The proposed method uses feature engineering to transform raw data into features typically used in physical metallurgy to better utilize the artificial neural network model in understanding the process. SHAP values are used to reveal the effect of thermomechanical controlled processing, which can be rationalized by physical metallurgy theory.</p></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"15 ","pages":"Article 100531"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666827024000070/pdfft?md5=f6b3bdad6bf167fd8a2aa91012ecb379&pid=1-s2.0-S2666827024000070-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Neural network prediction of the effect of thermomechanical controlled processing on mechanical properties\",\"authors\":\"Sushant Sinha ,&nbsp;Denzel Guye ,&nbsp;Xiaoping Ma ,&nbsp;Kashif Rehman ,&nbsp;Stephen Yue ,&nbsp;Narges Armanfard\",\"doi\":\"10.1016/j.mlwa.2024.100531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The as-rolled mechanical properties of microalloyed steels result from their chemical composition and thermomechanical processing history. Accurate predictions of the mechanical properties would reduce the need for expensive and time-consuming testing. At the same time, understanding the interplay between process variables and alloy composition will help reduce product variability and facilitate future alloy design. This paper provides an artificial neural network methodology to predict lower yield strength (LYS) and ultimate tensile strength (UTS). The proposed method uses feature engineering to transform raw data into features typically used in physical metallurgy to better utilize the artificial neural network model in understanding the process. SHAP values are used to reveal the effect of thermomechanical controlled processing, which can be rationalized by physical metallurgy theory.</p></div>\",\"PeriodicalId\":74093,\"journal\":{\"name\":\"Machine learning with applications\",\"volume\":\"15 \",\"pages\":\"Article 100531\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666827024000070/pdfft?md5=f6b3bdad6bf167fd8a2aa91012ecb379&pid=1-s2.0-S2666827024000070-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning with applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666827024000070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827024000070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微合金钢的轧制机械性能源于其化学成分和热机械加工历史。对机械性能的准确预测将减少对昂贵且耗时的测试的需求。同时,了解工艺变量和合金成分之间的相互作用将有助于减少产品变异性,促进未来的合金设计。本文提供了一种预测低屈服强度(LYS)和极限抗拉强度(UTS)的人工神经网络方法。所提出的方法利用特征工程将原始数据转换为物理冶金学中常用的特征,以便更好地利用人工神经网络模型理解工艺过程。SHAP 值用于揭示热机械受控加工的效果,而物理冶金理论可以合理地解释这种效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network prediction of the effect of thermomechanical controlled processing on mechanical properties

The as-rolled mechanical properties of microalloyed steels result from their chemical composition and thermomechanical processing history. Accurate predictions of the mechanical properties would reduce the need for expensive and time-consuming testing. At the same time, understanding the interplay between process variables and alloy composition will help reduce product variability and facilitate future alloy design. This paper provides an artificial neural network methodology to predict lower yield strength (LYS) and ultimate tensile strength (UTS). The proposed method uses feature engineering to transform raw data into features typically used in physical metallurgy to better utilize the artificial neural network model in understanding the process. SHAP values are used to reveal the effect of thermomechanical controlled processing, which can be rationalized by physical metallurgy theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信