LFSPROShiny:用于预测和可视化具有遗传性 TP53 基因突变的家族患癌风险的交互式 R/Shiny 应用程序。

IF 3.3 Q2 ONCOLOGY
Nam H Nguyen, Elissa B Dodd-Eaton, Gang Peng, Jessica L Corredor, Wenwei Jiao, Jacynda Woodman-Ross, Banu K Arun, Wenyi Wang
{"title":"LFSPROShiny:用于预测和可视化具有遗传性 TP53 基因突变的家族患癌风险的交互式 R/Shiny 应用程序。","authors":"Nam H Nguyen, Elissa B Dodd-Eaton, Gang Peng, Jessica L Corredor, Wenwei Jiao, Jacynda Woodman-Ross, Banu K Arun, Wenyi Wang","doi":"10.1200/CCI.23.00167","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>LFSPRO is an R library that implements risk prediction models for Li-Fraumeni syndrome (LFS), a genetic disorder characterized by deleterious germline mutations in the <i>TP53</i> gene. To facilitate the use of these models in clinics, we developed LFSPROShiny, an interactive R/Shiny interface of LFSPRO that allows genetic counselors (GCs) to perform risk predictions without any programming components and further visualize the risk profiles of their patients to aid the decision-making process.</p><p><strong>Methods: </strong>LFSPROShiny implements two models that have been validated on multiple LFS patient cohorts: a competing risk model that predicts cancer-specific risks for the first primary and a recurrent-event model that predicts the risk of a second primary tumor. Starting with a visualization template, we keep regular contact with GCs, who ran LFSPROShiny in their counseling sessions, to collect feedback and discuss potential improvement. On receiving the family history as input, LFSPROShiny renders the family into a pedigree and displays the risk estimates of the family members in a tabular format. The software offers interactive overlaid side-by-side bar charts for visualization of the patients' cancer risks relative to the general population.</p><p><strong>Results: </strong>We walk through a detailed example to illustrate how GCs can run LFSPROShiny in clinics from data preparation to downstream analyses and interpretation of results with an emphasis on the utilities that LFSPROShiny provides to aid decision making.</p><p><strong>Conclusion: </strong>Since December 2021, we have applied LFSPROShiny to over 100 families from counseling sessions at the MD Anderson Cancer Center. Our study suggests that software tools with easy-to-use interfaces are crucial for the dissemination of risk prediction models in clinical settings, hence serving as a guideline for future development of similar models.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10871774/pdf/","citationCount":"0","resultStr":"{\"title\":\"LFSPROShiny: An Interactive R/Shiny App for Prediction and Visualization of Cancer Risks in Families With Deleterious Germline <i>TP53</i> Mutations.\",\"authors\":\"Nam H Nguyen, Elissa B Dodd-Eaton, Gang Peng, Jessica L Corredor, Wenwei Jiao, Jacynda Woodman-Ross, Banu K Arun, Wenyi Wang\",\"doi\":\"10.1200/CCI.23.00167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>LFSPRO is an R library that implements risk prediction models for Li-Fraumeni syndrome (LFS), a genetic disorder characterized by deleterious germline mutations in the <i>TP53</i> gene. To facilitate the use of these models in clinics, we developed LFSPROShiny, an interactive R/Shiny interface of LFSPRO that allows genetic counselors (GCs) to perform risk predictions without any programming components and further visualize the risk profiles of their patients to aid the decision-making process.</p><p><strong>Methods: </strong>LFSPROShiny implements two models that have been validated on multiple LFS patient cohorts: a competing risk model that predicts cancer-specific risks for the first primary and a recurrent-event model that predicts the risk of a second primary tumor. Starting with a visualization template, we keep regular contact with GCs, who ran LFSPROShiny in their counseling sessions, to collect feedback and discuss potential improvement. On receiving the family history as input, LFSPROShiny renders the family into a pedigree and displays the risk estimates of the family members in a tabular format. The software offers interactive overlaid side-by-side bar charts for visualization of the patients' cancer risks relative to the general population.</p><p><strong>Results: </strong>We walk through a detailed example to illustrate how GCs can run LFSPROShiny in clinics from data preparation to downstream analyses and interpretation of results with an emphasis on the utilities that LFSPROShiny provides to aid decision making.</p><p><strong>Conclusion: </strong>Since December 2021, we have applied LFSPROShiny to over 100 families from counseling sessions at the MD Anderson Cancer Center. Our study suggests that software tools with easy-to-use interfaces are crucial for the dissemination of risk prediction models in clinical settings, hence serving as a guideline for future development of similar models.</p>\",\"PeriodicalId\":51626,\"journal\":{\"name\":\"JCO Clinical Cancer Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10871774/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCO Clinical Cancer Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1200/CCI.23.00167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI.23.00167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:LFSPRO 是一个 R 库,它实现了 Li-Fraumeni 综合征(LFS)的风险预测模型,LFS 是一种遗传疾病,其特征是 TP53 基因的有害种系突变。为了便于在临床中使用这些模型,我们开发了 LFSPROShiny,它是 LFSPRO 的交互式 R/Shiny 界面,遗传咨询师(GC)无需任何编程组件即可执行风险预测,并进一步可视化患者的风险概况,以帮助决策过程:LFSPROShiny 实现了两个已在多个 LFS 患者队列中得到验证的模型:一个是预测第一原发肿瘤特异性癌症风险的竞争风险模型,另一个是预测第二原发肿瘤风险的复发事件模型。从可视化模板开始,我们与在咨询过程中使用 LFSPROShiny 的 GC 保持定期联系,收集反馈并讨论可能的改进。LFSPROShiny 收到输入的家族病史后,会将家族渲染成血统,并以表格形式显示家族成员的风险估计值。该软件提供交互式并排叠加条形图,可直观显示患者相对于普通人群的癌症风险:我们通过一个详细的示例来说明全球癌症中心如何在临床中运行 LFSPROShiny,从数据准备到下游分析和结果解读,重点是 LFSPROShiny 为辅助决策而提供的实用工具:自 2021 年 12 月以来,我们已将 LFSPROShiny 应用于 MD 安德森癌症中心咨询课程中的 100 多个家庭。我们的研究表明,具有易用界面的软件工具对于在临床环境中推广风险预测模型至关重要,因此可作为今后开发类似模型的指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LFSPROShiny: An Interactive R/Shiny App for Prediction and Visualization of Cancer Risks in Families With Deleterious Germline TP53 Mutations.

Purpose: LFSPRO is an R library that implements risk prediction models for Li-Fraumeni syndrome (LFS), a genetic disorder characterized by deleterious germline mutations in the TP53 gene. To facilitate the use of these models in clinics, we developed LFSPROShiny, an interactive R/Shiny interface of LFSPRO that allows genetic counselors (GCs) to perform risk predictions without any programming components and further visualize the risk profiles of their patients to aid the decision-making process.

Methods: LFSPROShiny implements two models that have been validated on multiple LFS patient cohorts: a competing risk model that predicts cancer-specific risks for the first primary and a recurrent-event model that predicts the risk of a second primary tumor. Starting with a visualization template, we keep regular contact with GCs, who ran LFSPROShiny in their counseling sessions, to collect feedback and discuss potential improvement. On receiving the family history as input, LFSPROShiny renders the family into a pedigree and displays the risk estimates of the family members in a tabular format. The software offers interactive overlaid side-by-side bar charts for visualization of the patients' cancer risks relative to the general population.

Results: We walk through a detailed example to illustrate how GCs can run LFSPROShiny in clinics from data preparation to downstream analyses and interpretation of results with an emphasis on the utilities that LFSPROShiny provides to aid decision making.

Conclusion: Since December 2021, we have applied LFSPROShiny to over 100 families from counseling sessions at the MD Anderson Cancer Center. Our study suggests that software tools with easy-to-use interfaces are crucial for the dissemination of risk prediction models in clinical settings, hence serving as a guideline for future development of similar models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信