Qingpeng Sun, Liya Zhou, Zhiyong Yu, Jun Zhang, Chao Zhang, Honglin Pi
{"title":"人甲状旁腺激素(1-34)通过上调 Rac1 的表达诱导细胞迁移,从而加速皮肤伤口愈合。","authors":"Qingpeng Sun, Liya Zhou, Zhiyong Yu, Jun Zhang, Chao Zhang, Honglin Pi","doi":"10.1186/s13008-024-00111-3","DOIUrl":null,"url":null,"abstract":"<p><p>Delayed wound healing is a public issue that imposes a significant burden on both society and the patients themselves. To date, although numerous methods have been developed to accelerate the speed of wound closure, the therapeutic effects are partially limited due to the complex procedures, high costs, potential side effects, and ethical concerns. While some studies have reported that the in-vivo application of Human Parathyroid Hormone (1-34) (hPTH(1-34)) promotes the wound-healing process, the definitive role and underlying mechanisms through which it regulates the behavior of fibroblasts and keratinocytes remains unclear. Herein, hPTH(1-34)'s role in cell migration is evaluated with a series of in-vitro and in-vivo studies, whereby hPTH(1-34)'s underlying mechanism in activating the two types of cells was detected. The in-vitro study revealed that hPTH(1-34) enhanced the migration of both fibroblasts and HaCaT cells. Ras-associated C3 botulinum toxin subunit 1 (Rac1), a classical member of the Rho family, was upregulated in hPTH(1-34)-treated fibroblasts and HaCaT cells. Further study by silencing the expression of Rac1 with siRNA reversed the hPTH(1-34)-enhanced cell migration, thus confirming that Rac1 was involved in hPTH(1-34)-induced cell behavior. In-vivo study on rat wound models confirmed the effects of hPTH(1-34) on fibroblasts and keratinocytes, with increased collagen deposition, fibroblasts accumulation, and Rac1 expression in the hPTH(1-34)-treated wounds. In summary, the present study demonstrated that hPTH(1-34) accelerated wound healing through enhancing the migration of cells through the up-regulation of Rac1 expression.</p>","PeriodicalId":49263,"journal":{"name":"Cell Division","volume":"19 1","pages":"4"},"PeriodicalIF":2.8000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10860314/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human Parathyroid Hormone (1-34) accelerates skin wound healing through inducing cell migration via up-regulating the expression of Rac1.\",\"authors\":\"Qingpeng Sun, Liya Zhou, Zhiyong Yu, Jun Zhang, Chao Zhang, Honglin Pi\",\"doi\":\"10.1186/s13008-024-00111-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Delayed wound healing is a public issue that imposes a significant burden on both society and the patients themselves. To date, although numerous methods have been developed to accelerate the speed of wound closure, the therapeutic effects are partially limited due to the complex procedures, high costs, potential side effects, and ethical concerns. While some studies have reported that the in-vivo application of Human Parathyroid Hormone (1-34) (hPTH(1-34)) promotes the wound-healing process, the definitive role and underlying mechanisms through which it regulates the behavior of fibroblasts and keratinocytes remains unclear. Herein, hPTH(1-34)'s role in cell migration is evaluated with a series of in-vitro and in-vivo studies, whereby hPTH(1-34)'s underlying mechanism in activating the two types of cells was detected. The in-vitro study revealed that hPTH(1-34) enhanced the migration of both fibroblasts and HaCaT cells. Ras-associated C3 botulinum toxin subunit 1 (Rac1), a classical member of the Rho family, was upregulated in hPTH(1-34)-treated fibroblasts and HaCaT cells. Further study by silencing the expression of Rac1 with siRNA reversed the hPTH(1-34)-enhanced cell migration, thus confirming that Rac1 was involved in hPTH(1-34)-induced cell behavior. In-vivo study on rat wound models confirmed the effects of hPTH(1-34) on fibroblasts and keratinocytes, with increased collagen deposition, fibroblasts accumulation, and Rac1 expression in the hPTH(1-34)-treated wounds. In summary, the present study demonstrated that hPTH(1-34) accelerated wound healing through enhancing the migration of cells through the up-regulation of Rac1 expression.</p>\",\"PeriodicalId\":49263,\"journal\":{\"name\":\"Cell Division\",\"volume\":\"19 1\",\"pages\":\"4\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10860314/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Division\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13008-024-00111-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Division","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13008-024-00111-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Human Parathyroid Hormone (1-34) accelerates skin wound healing through inducing cell migration via up-regulating the expression of Rac1.
Delayed wound healing is a public issue that imposes a significant burden on both society and the patients themselves. To date, although numerous methods have been developed to accelerate the speed of wound closure, the therapeutic effects are partially limited due to the complex procedures, high costs, potential side effects, and ethical concerns. While some studies have reported that the in-vivo application of Human Parathyroid Hormone (1-34) (hPTH(1-34)) promotes the wound-healing process, the definitive role and underlying mechanisms through which it regulates the behavior of fibroblasts and keratinocytes remains unclear. Herein, hPTH(1-34)'s role in cell migration is evaluated with a series of in-vitro and in-vivo studies, whereby hPTH(1-34)'s underlying mechanism in activating the two types of cells was detected. The in-vitro study revealed that hPTH(1-34) enhanced the migration of both fibroblasts and HaCaT cells. Ras-associated C3 botulinum toxin subunit 1 (Rac1), a classical member of the Rho family, was upregulated in hPTH(1-34)-treated fibroblasts and HaCaT cells. Further study by silencing the expression of Rac1 with siRNA reversed the hPTH(1-34)-enhanced cell migration, thus confirming that Rac1 was involved in hPTH(1-34)-induced cell behavior. In-vivo study on rat wound models confirmed the effects of hPTH(1-34) on fibroblasts and keratinocytes, with increased collagen deposition, fibroblasts accumulation, and Rac1 expression in the hPTH(1-34)-treated wounds. In summary, the present study demonstrated that hPTH(1-34) accelerated wound healing through enhancing the migration of cells through the up-regulation of Rac1 expression.
期刊介绍:
Cell Division is an open access, peer-reviewed journal that encompasses all the molecular aspects of cell cycle control and cancer, cell growth, proliferation, survival, differentiation, signalling, gene transcription, protein synthesis, genome integrity, chromosome stability, centrosome duplication, DNA damage and DNA repair.
Cell Division provides an online forum for the cell-cycle community that aims to publish articles on all exciting aspects of cell-cycle research and to bridge the gap between models of cell cycle regulation, development, and cancer biology. This forum is driven by specialized and timely research articles, reviews and commentaries focused on this fast moving field, providing an invaluable tool for cell-cycle biologists.
Cell Division publishes articles in areas which includes, but not limited to:
DNA replication, cell fate decisions, cell cycle & development
Cell proliferation, mitosis, spindle assembly checkpoint, ubiquitin mediated degradation
DNA damage & repair
Apoptosis & cell death