{"title":"由基于石墨烯的电偶极分子组成的长平均寿命时间可控且具有潜在可扩展性的量子比特","authors":"Yong-Yi Huang","doi":"10.1140/epjqt/s40507-024-00219-z","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a new kind of qubits composed of electric dipolar molecules. The electric dipolar molecules in an external electric field will take simple harmonic oscillations, whose quantum states belonging to the two lowest energy levels act as the states <span>\\(|0\\rangle\\)</span>, <span>\\(|1\\rangle\\)</span> of a qubit. The qubits’ excited states have a very long controlled mean life time about several seconds. We can perform quantum computations by manipulating the qubits of electric dipolar molecules just like those of neutral atoms. When the qubits are used for quantum computations, the dipolar moments’ orientations will harmonically oscillate along an external electric field and they will not change the directions: along or against the electric field, so the qubits can be large-scalely manufactured in graphene system. The radius of Rydberg blockade is about 100 nm.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00219-z","citationCount":"0","resultStr":"{\"title\":\"The long mean-life-time-controlled and potentially scalable qubits composed of electric dipolar molecules based on graphene\",\"authors\":\"Yong-Yi Huang\",\"doi\":\"10.1140/epjqt/s40507-024-00219-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a new kind of qubits composed of electric dipolar molecules. The electric dipolar molecules in an external electric field will take simple harmonic oscillations, whose quantum states belonging to the two lowest energy levels act as the states <span>\\\\(|0\\\\rangle\\\\)</span>, <span>\\\\(|1\\\\rangle\\\\)</span> of a qubit. The qubits’ excited states have a very long controlled mean life time about several seconds. We can perform quantum computations by manipulating the qubits of electric dipolar molecules just like those of neutral atoms. When the qubits are used for quantum computations, the dipolar moments’ orientations will harmonically oscillate along an external electric field and they will not change the directions: along or against the electric field, so the qubits can be large-scalely manufactured in graphene system. The radius of Rydberg blockade is about 100 nm.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00219-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-024-00219-z\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00219-z","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
The long mean-life-time-controlled and potentially scalable qubits composed of electric dipolar molecules based on graphene
We propose a new kind of qubits composed of electric dipolar molecules. The electric dipolar molecules in an external electric field will take simple harmonic oscillations, whose quantum states belonging to the two lowest energy levels act as the states \(|0\rangle\), \(|1\rangle\) of a qubit. The qubits’ excited states have a very long controlled mean life time about several seconds. We can perform quantum computations by manipulating the qubits of electric dipolar molecules just like those of neutral atoms. When the qubits are used for quantum computations, the dipolar moments’ orientations will harmonically oscillate along an external electric field and they will not change the directions: along or against the electric field, so the qubits can be large-scalely manufactured in graphene system. The radius of Rydberg blockade is about 100 nm.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.