利用基于注意力的门控递归单元进行岩相分类

IF 6.6 1区 计算机科学 Q1 Multidisciplinary
Yuwen Liu;Yulan Zhang;Xingyuan Mao;Xucheng Zhou;Jingwen Chang;Wenwei Wang;Pan Wang;Lianyong Qi
{"title":"利用基于注意力的门控递归单元进行岩相分类","authors":"Yuwen Liu;Yulan Zhang;Xingyuan Mao;Xucheng Zhou;Jingwen Chang;Wenwei Wang;Pan Wang;Lianyong Qi","doi":"10.26599/TST.2023.9010077","DOIUrl":null,"url":null,"abstract":"Lithological facies classification is a pivotal task in petroleum geology, underpinning reservoir characterization and influencing decision-making in exploration and production operations. Traditional classification methods, such as support vector machines and Gaussian process classifiers, often struggle with the complexity and nonlinearity of geological data, leading to suboptimal performance. Moreover, numerous prevalent approaches fail to adequately consider the inherent dependencies in the sequence of measurements from adjacent depths in a well. A novel approach leveraging an attention-based gated recurrent unit (AGRU) model is introduced in this paper to address these challenges. The AGRU model excels by exploiting the sequential nature of well-log data and capturing long-range dependencies through an attention mechanism. This model enables a flexible and context-dependent weighting of different parts of the sequence, enhancing the discernment of key features for classification. The proposed method was validated on two publicly available datasets. Results demonstrate a considerably improvement over traditional methods. Specifically, the AGRU model achieved superior performance metrics considering precision, recall, and F1-score.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10431751","citationCount":"0","resultStr":"{\"title\":\"Lithological Facies Classification Using Attention-Based Gated Recurrent Unit\",\"authors\":\"Yuwen Liu;Yulan Zhang;Xingyuan Mao;Xucheng Zhou;Jingwen Chang;Wenwei Wang;Pan Wang;Lianyong Qi\",\"doi\":\"10.26599/TST.2023.9010077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithological facies classification is a pivotal task in petroleum geology, underpinning reservoir characterization and influencing decision-making in exploration and production operations. Traditional classification methods, such as support vector machines and Gaussian process classifiers, often struggle with the complexity and nonlinearity of geological data, leading to suboptimal performance. Moreover, numerous prevalent approaches fail to adequately consider the inherent dependencies in the sequence of measurements from adjacent depths in a well. A novel approach leveraging an attention-based gated recurrent unit (AGRU) model is introduced in this paper to address these challenges. The AGRU model excels by exploiting the sequential nature of well-log data and capturing long-range dependencies through an attention mechanism. This model enables a flexible and context-dependent weighting of different parts of the sequence, enhancing the discernment of key features for classification. The proposed method was validated on two publicly available datasets. Results demonstrate a considerably improvement over traditional methods. Specifically, the AGRU model achieved superior performance metrics considering precision, recall, and F1-score.\",\"PeriodicalId\":48690,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10431751\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10431751/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10431751/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

岩性面分类是石油地质学的一项关键任务,它是储层特征描述的基础,影响着勘探和生产作业的决策。传统的分类方法,如支持向量机和高斯过程分类器,往往难以应对地质数据的复杂性和非线性,导致性能不理想。此外,许多流行的方法未能充分考虑油井相邻深度测量序列的内在依赖性。本文介绍了一种利用基于注意力的门控递归单元(AGRU)模型的新方法,以应对这些挑战。AGRU 模型充分利用了井记录数据的顺序性,并通过注意力机制捕捉长程依赖关系。该模型能够灵活地根据上下文对序列的不同部分进行加权,从而提高对分类关键特征的识别能力。我们在两个公开的数据集上对所提出的方法进行了验证。结果表明,与传统方法相比,该方法有了很大改进。具体来说,AGRU 模型在精确度、召回率和 F1 分数方面都取得了优异的性能指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lithological Facies Classification Using Attention-Based Gated Recurrent Unit
Lithological facies classification is a pivotal task in petroleum geology, underpinning reservoir characterization and influencing decision-making in exploration and production operations. Traditional classification methods, such as support vector machines and Gaussian process classifiers, often struggle with the complexity and nonlinearity of geological data, leading to suboptimal performance. Moreover, numerous prevalent approaches fail to adequately consider the inherent dependencies in the sequence of measurements from adjacent depths in a well. A novel approach leveraging an attention-based gated recurrent unit (AGRU) model is introduced in this paper to address these challenges. The AGRU model excels by exploiting the sequential nature of well-log data and capturing long-range dependencies through an attention mechanism. This model enables a flexible and context-dependent weighting of different parts of the sequence, enhancing the discernment of key features for classification. The proposed method was validated on two publicly available datasets. Results demonstrate a considerably improvement over traditional methods. Specifically, the AGRU model achieved superior performance metrics considering precision, recall, and F1-score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信