使用神经网络分析大型市场数据:因果分析法

Marc-Aurèle Divernois;Jalal Etesami;Damir Filipovic;Negar Kiyavash
{"title":"使用神经网络分析大型市场数据:因果分析法","authors":"Marc-Aurèle Divernois;Jalal Etesami;Damir Filipovic;Negar Kiyavash","doi":"10.1109/JSAIT.2024.3351549","DOIUrl":null,"url":null,"abstract":"We develop a data-driven framework to identify the interconnections between firms using an information-theoretic measure. This measure generalizes Granger causality and is capable of detecting nonlinear relationships within a network. Moreover, we develop an algorithm using recurrent neural networks and the aforementioned measure to identify the interconnections of high-dimensional nonlinear systems. The outcome of this algorithm is the causal graph encoding the interconnections among the firms. These causal graphs can be used as preliminary feature selection for another predictive model or for policy design. We evaluate the performance of our algorithm using both synthetic linear and nonlinear experiments and apply it to the daily stock returns of U.S. listed firms and infer their interconnections.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"4 ","pages":"833-847"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Large Market Data Using Neural Networks: A Causal Approach\",\"authors\":\"Marc-Aurèle Divernois;Jalal Etesami;Damir Filipovic;Negar Kiyavash\",\"doi\":\"10.1109/JSAIT.2024.3351549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a data-driven framework to identify the interconnections between firms using an information-theoretic measure. This measure generalizes Granger causality and is capable of detecting nonlinear relationships within a network. Moreover, we develop an algorithm using recurrent neural networks and the aforementioned measure to identify the interconnections of high-dimensional nonlinear systems. The outcome of this algorithm is the causal graph encoding the interconnections among the firms. These causal graphs can be used as preliminary feature selection for another predictive model or for policy design. We evaluate the performance of our algorithm using both synthetic linear and nonlinear experiments and apply it to the daily stock returns of U.S. listed firms and infer their interconnections.\",\"PeriodicalId\":73295,\"journal\":{\"name\":\"IEEE journal on selected areas in information theory\",\"volume\":\"4 \",\"pages\":\"833-847\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in information theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10400975/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10400975/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一个数据驱动的框架,利用信息论的方法来识别企业之间的相互联系。这种度量方法概括了格兰杰因果关系,能够检测网络中的非线性关系。此外,我们还开发了一种算法,利用递归神经网络和上述措施来识别高维非线性系统的相互联系。该算法的结果是编码企业间相互联系的因果图。这些因果图可以作为另一个预测模型或政策设计的初步特征选择。我们使用合成线性和非线性实验来评估我们算法的性能,并将其应用于美国上市公司的每日股票回报率,推断它们之间的相互联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Large Market Data Using Neural Networks: A Causal Approach
We develop a data-driven framework to identify the interconnections between firms using an information-theoretic measure. This measure generalizes Granger causality and is capable of detecting nonlinear relationships within a network. Moreover, we develop an algorithm using recurrent neural networks and the aforementioned measure to identify the interconnections of high-dimensional nonlinear systems. The outcome of this algorithm is the causal graph encoding the interconnections among the firms. These causal graphs can be used as preliminary feature selection for another predictive model or for policy design. We evaluate the performance of our algorithm using both synthetic linear and nonlinear experiments and apply it to the daily stock returns of U.S. listed firms and infer their interconnections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信