利用物联网环境,基于遗传算法调整光伏系统升压转换器的滑模控制器

Q3 Mathematics
Roberto Inomoto , Alfeu J. Sguarezi Filho , José Roberto Monteiro , Eduardo C. Marques da Costa
{"title":"利用物联网环境,基于遗传算法调整光伏系统升压转换器的滑模控制器","authors":"Roberto Inomoto ,&nbsp;Alfeu J. Sguarezi Filho ,&nbsp;José Roberto Monteiro ,&nbsp;Eduardo C. Marques da Costa","doi":"10.1016/j.rico.2024.100389","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a novel controller optimization of boost converter by tunning two controllers of voltage and current in PV (Photovoltaic) boost converters: Sliding Mode Control (SMC) or Sliding Mode plus Proportional-Integrative. Genetic Algorithm (GA) optimization is applied in a Internet of Things (IoT) context, in which the server side consists of running the GA and thereafter used to tune the SMC and SMPIC of the PV plant boost converter. Communication between the IoT (PV plant) and cloud server comprises to the acquired currents and voltages from PV to the server and controllers parameters from server to IoT. Data from the IoT is applied to calculate the fitness function for a given solution, which learns the solar plant (machine learning). Experimental results using hardware are considered, in order to evaluate the performance, and results are compared between heuristic and deterministic parameters from SMC or SMPIC, proving the reduction of overshoot and settling time.</p></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"14 ","pages":"Article 100389"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666720724000195/pdfft?md5=d10c6f38b57fb835a82fd6f572dea59b&pid=1-s2.0-S2666720724000195-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Genetic algorithm based tuning of sliding mode controllers for a boost converter of PV system using internet of things environment\",\"authors\":\"Roberto Inomoto ,&nbsp;Alfeu J. Sguarezi Filho ,&nbsp;José Roberto Monteiro ,&nbsp;Eduardo C. Marques da Costa\",\"doi\":\"10.1016/j.rico.2024.100389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a novel controller optimization of boost converter by tunning two controllers of voltage and current in PV (Photovoltaic) boost converters: Sliding Mode Control (SMC) or Sliding Mode plus Proportional-Integrative. Genetic Algorithm (GA) optimization is applied in a Internet of Things (IoT) context, in which the server side consists of running the GA and thereafter used to tune the SMC and SMPIC of the PV plant boost converter. Communication between the IoT (PV plant) and cloud server comprises to the acquired currents and voltages from PV to the server and controllers parameters from server to IoT. Data from the IoT is applied to calculate the fitness function for a given solution, which learns the solar plant (machine learning). Experimental results using hardware are considered, in order to evaluate the performance, and results are compared between heuristic and deterministic parameters from SMC or SMPIC, proving the reduction of overshoot and settling time.</p></div>\",\"PeriodicalId\":34733,\"journal\":{\"name\":\"Results in Control and Optimization\",\"volume\":\"14 \",\"pages\":\"Article 100389\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666720724000195/pdfft?md5=d10c6f38b57fb835a82fd6f572dea59b&pid=1-s2.0-S2666720724000195-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666720724000195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724000195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文通过调整光伏升压转换器中的两个电压和电流控制器,提出了一种新型升压转换器控制器优化方法:滑动模式控制 (SMC) 或滑动模式加比例积分。遗传算法(GA)优化应用于物联网(IoT)环境,其中服务器端包括运行遗传算法,然后用于调整光伏电站升压转换器的 SMC 和 SMPIC。物联网(光伏电站)和云服务器之间的通信包括从光伏电站到服务器的电流和电压以及从服务器到物联网的控制器参数。来自物联网的数据用于计算给定解决方案的适应度函数,从而学习太阳能电站(机器学习)。为了评估性能,考虑了使用硬件的实验结果,并对启发式参数和来自 SMC 或 SMPIC 的确定性参数进行了比较,证明了过冲和稳定时间的减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic algorithm based tuning of sliding mode controllers for a boost converter of PV system using internet of things environment

This paper proposes a novel controller optimization of boost converter by tunning two controllers of voltage and current in PV (Photovoltaic) boost converters: Sliding Mode Control (SMC) or Sliding Mode plus Proportional-Integrative. Genetic Algorithm (GA) optimization is applied in a Internet of Things (IoT) context, in which the server side consists of running the GA and thereafter used to tune the SMC and SMPIC of the PV plant boost converter. Communication between the IoT (PV plant) and cloud server comprises to the acquired currents and voltages from PV to the server and controllers parameters from server to IoT. Data from the IoT is applied to calculate the fitness function for a given solution, which learns the solar plant (machine learning). Experimental results using hardware are considered, in order to evaluate the performance, and results are compared between heuristic and deterministic parameters from SMC or SMPIC, proving the reduction of overshoot and settling time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信