利用优化的深度特征和集合分类从胸部 CT 图像中检测 COVID-19

Muhammad Minoar Hossain , Md. Abul Ala Walid , S.M. Saklain Galib , Mir Mohammad Azad , Wahidur Rahman , A.S.M. Shafi , Mohammad Motiur Rahman
{"title":"利用优化的深度特征和集合分类从胸部 CT 图像中检测 COVID-19","authors":"Muhammad Minoar Hossain ,&nbsp;Md. Abul Ala Walid ,&nbsp;S.M. Saklain Galib ,&nbsp;Mir Mohammad Azad ,&nbsp;Wahidur Rahman ,&nbsp;A.S.M. Shafi ,&nbsp;Mohammad Motiur Rahman","doi":"10.1016/j.sasc.2024.200077","DOIUrl":null,"url":null,"abstract":"<div><p>Diagnosis of COVID-19 positive patients is the eventual move to impede the expansion of coronavirus. Variations of coronavirus make it tough to recognize COVID-19 positive patients through symptoms. Hence, this research aims at a faster and automatic detection approach of COVID-19 disease from the chest Computed tomography (CT) scan images. For the composition of the system, this approach constructs a feature vector from the CT images through the features fusion of two Convolutional neural network (CNN) models namely VGG-19 and ResNet-50. Before the feature fusion, preprocessing techniques are applied to gain more accurate outcomes. Moreover, pertinent features are identified from the feature vector by using several feature optimization methods namely Recursive feature elimination (RFE), Principal component analysis (PCA), and Linear discriminant analysis (LDA), and among them, we have observed PCA as the best preference. Classification is performed on the optimized feature utilizing the Max voting ensemble classification (MVEC). The fused features of VGG-19 and ResNet-50, processed with PCA and MVEC, provide the best outcomes of accuracy, specificity, sensitivity, and precision at 98.51 %, 97.58 %, 99.49 %, and 97.47 %, respectively, after 5-fold cross-validation for the proposed method.</p></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"6 ","pages":"Article 200077"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772941924000061/pdfft?md5=4a956d098698d5be89fe3932e6890954&pid=1-s2.0-S2772941924000061-main.pdf","citationCount":"0","resultStr":"{\"title\":\"COVID-19 detection from chest CT images using optimized deep features and ensemble classification\",\"authors\":\"Muhammad Minoar Hossain ,&nbsp;Md. Abul Ala Walid ,&nbsp;S.M. Saklain Galib ,&nbsp;Mir Mohammad Azad ,&nbsp;Wahidur Rahman ,&nbsp;A.S.M. Shafi ,&nbsp;Mohammad Motiur Rahman\",\"doi\":\"10.1016/j.sasc.2024.200077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diagnosis of COVID-19 positive patients is the eventual move to impede the expansion of coronavirus. Variations of coronavirus make it tough to recognize COVID-19 positive patients through symptoms. Hence, this research aims at a faster and automatic detection approach of COVID-19 disease from the chest Computed tomography (CT) scan images. For the composition of the system, this approach constructs a feature vector from the CT images through the features fusion of two Convolutional neural network (CNN) models namely VGG-19 and ResNet-50. Before the feature fusion, preprocessing techniques are applied to gain more accurate outcomes. Moreover, pertinent features are identified from the feature vector by using several feature optimization methods namely Recursive feature elimination (RFE), Principal component analysis (PCA), and Linear discriminant analysis (LDA), and among them, we have observed PCA as the best preference. Classification is performed on the optimized feature utilizing the Max voting ensemble classification (MVEC). The fused features of VGG-19 and ResNet-50, processed with PCA and MVEC, provide the best outcomes of accuracy, specificity, sensitivity, and precision at 98.51 %, 97.58 %, 99.49 %, and 97.47 %, respectively, after 5-fold cross-validation for the proposed method.</p></div>\",\"PeriodicalId\":101205,\"journal\":{\"name\":\"Systems and Soft Computing\",\"volume\":\"6 \",\"pages\":\"Article 200077\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772941924000061/pdfft?md5=4a956d098698d5be89fe3932e6890954&pid=1-s2.0-S2772941924000061-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772941924000061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941924000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对 COVID-19 阳性患者进行诊断是阻止冠状病毒扩散的最终举措。由于冠状病毒的变异,很难通过症状识别 COVID-19 阳性患者。因此,本研究旨在从胸部计算机断层扫描(CT)图像中更快地自动检测 COVID-19 疾病。在系统构成方面,该方法通过两个卷积神经网络(CNN)模型(即 VGG-19 和 ResNet-50)的特征融合,从 CT 图像中构建特征向量。在特征融合之前,会应用预处理技术以获得更准确的结果。此外,我们还使用了几种特征优化方法,即递归特征消除法(RFE)、主成分分析法(PCA)和线性判别分析法(LDA),从特征向量中识别出相关特征。利用最大投票集合分类法(MVEC)对优化后的特征进行分类。使用 PCA 和 MVEC 处理 VGG-19 和 ResNet-50 的融合特征后,经过 5 倍交叉验证,建议方法的准确度、特异度、灵敏度和精确度分别达到 98.51 %、97.58 %、99.49 % 和 97.47 %,结果最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COVID-19 detection from chest CT images using optimized deep features and ensemble classification

Diagnosis of COVID-19 positive patients is the eventual move to impede the expansion of coronavirus. Variations of coronavirus make it tough to recognize COVID-19 positive patients through symptoms. Hence, this research aims at a faster and automatic detection approach of COVID-19 disease from the chest Computed tomography (CT) scan images. For the composition of the system, this approach constructs a feature vector from the CT images through the features fusion of two Convolutional neural network (CNN) models namely VGG-19 and ResNet-50. Before the feature fusion, preprocessing techniques are applied to gain more accurate outcomes. Moreover, pertinent features are identified from the feature vector by using several feature optimization methods namely Recursive feature elimination (RFE), Principal component analysis (PCA), and Linear discriminant analysis (LDA), and among them, we have observed PCA as the best preference. Classification is performed on the optimized feature utilizing the Max voting ensemble classification (MVEC). The fused features of VGG-19 and ResNet-50, processed with PCA and MVEC, provide the best outcomes of accuracy, specificity, sensitivity, and precision at 98.51 %, 97.58 %, 99.49 %, and 97.47 %, respectively, after 5-fold cross-validation for the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信