广义洛伦兹模型的稳定性分析与混沌抑制

Q1 Mathematics
Hamza Rouah
{"title":"广义洛伦兹模型的稳定性分析与混沌抑制","authors":"Hamza Rouah","doi":"10.1016/j.csfx.2024.100104","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the stability analysis of the equilibrium points and the influence of the orientation on the suppression of chaotic behavior of the generalized Lorenz system proposed. A three-dimensional system model is obtained using the spectral method. We proved that the first equilibrium point is globally asymptotically stable and the other two equilibria are asymptotically stable under certain conditions on the control parameters <em>σ</em>, <em>P</em>, <em>r</em>, <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. These theoretical results are supported by numerical simulations. Also, we showed that chaos can be suppressed by a boundary crisis or period-doubling by choosing an appropriate tilt angle. Bifurcation diagrams are drawn to confirm these results.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"12 ","pages":"Article 100104"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590054424000010/pdfft?md5=2af1780e57995df68f25df25ef0450ec&pid=1-s2.0-S2590054424000010-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Stability analysis and suppress chaos in the generalized Lorenz model\",\"authors\":\"Hamza Rouah\",\"doi\":\"10.1016/j.csfx.2024.100104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate the stability analysis of the equilibrium points and the influence of the orientation on the suppression of chaotic behavior of the generalized Lorenz system proposed. A three-dimensional system model is obtained using the spectral method. We proved that the first equilibrium point is globally asymptotically stable and the other two equilibria are asymptotically stable under certain conditions on the control parameters <em>σ</em>, <em>P</em>, <em>r</em>, <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. These theoretical results are supported by numerical simulations. Also, we showed that chaos can be suppressed by a boundary crisis or period-doubling by choosing an appropriate tilt angle. Bifurcation diagrams are drawn to confirm these results.</p></div>\",\"PeriodicalId\":37147,\"journal\":{\"name\":\"Chaos, Solitons and Fractals: X\",\"volume\":\"12 \",\"pages\":\"Article 100104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590054424000010/pdfft?md5=2af1780e57995df68f25df25ef0450ec&pid=1-s2.0-S2590054424000010-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos, Solitons and Fractals: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590054424000010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054424000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了所提出的广义洛伦兹系统平衡点的稳定性分析以及取向对抑制混沌行为的影响。利用谱法得到了一个三维系统模型。我们证明了在控制参数 σ、P、r、b1 和 b2 的特定条件下,第一个平衡点是全局渐近稳定的,另外两个平衡点也是渐近稳定的。这些理论结果得到了数值模拟的支持。此外,我们还表明,通过选择适当的倾斜角,可以用边界危机或周期加倍来抑制混沌。我们绘制了分岔图来证实这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability analysis and suppress chaos in the generalized Lorenz model

In this paper, we investigate the stability analysis of the equilibrium points and the influence of the orientation on the suppression of chaotic behavior of the generalized Lorenz system proposed. A three-dimensional system model is obtained using the spectral method. We proved that the first equilibrium point is globally asymptotically stable and the other two equilibria are asymptotically stable under certain conditions on the control parameters σ, P, r, b1 and b2. These theoretical results are supported by numerical simulations. Also, we showed that chaos can be suppressed by a boundary crisis or period-doubling by choosing an appropriate tilt angle. Bifurcation diagrams are drawn to confirm these results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信