解决大规模电力系统中网络受限随机机组承诺问题的有效混合分解方法

IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Ricardo M. Lima , Gonzalo E. Constante-Flores , Antonio J. Conejo , Omar M. Knio
{"title":"解决大规模电力系统中网络受限随机机组承诺问题的有效混合分解方法","authors":"Ricardo M. Lima ,&nbsp;Gonzalo E. Constante-Flores ,&nbsp;Antonio J. Conejo ,&nbsp;Omar M. Knio","doi":"10.1016/j.ejco.2024.100085","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a novel hybrid method to solve the network-constrained stochastic unit commitment problem. We target realistic large-scale instances including hundreds of thermal generation units, thousands of transmission lines and nodes, and a large number of stochastic renewable generation units. This scheduling problem is formulated as a two-stage stochastic programming problem with continuous and binary variables in the first stage and only continuous variables in the second stage. We develop a hybrid solution method that decomposes the original problem into a master problem including unit commitment and dispatch decisions, and decomposed subproblems representing dispatch with transmission constraints per scenario. The proposed decomposition embeds a column-and-constraint generation step within the traditional Benders decomposition framework. The performance of the proposed decomposition technique is contrasted with the solution of the extensive form via branch-and-cut and Benders decomposition available in commercial solvers, and with conventional Benders decomposition variants. Our computational experiments show that the proposed method generates bounds of superior quality and finds solutions for instances where other approaches fail.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"12 ","pages":"Article 100085"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440624000029/pdfft?md5=6e5b9d1b9d47dcb072bff8ae23d37d2b&pid=1-s2.0-S2192440624000029-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An effective hybrid decomposition approach to solve the network-constrained stochastic unit commitment problem in large-scale power systems\",\"authors\":\"Ricardo M. Lima ,&nbsp;Gonzalo E. Constante-Flores ,&nbsp;Antonio J. Conejo ,&nbsp;Omar M. Knio\",\"doi\":\"10.1016/j.ejco.2024.100085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a novel hybrid method to solve the network-constrained stochastic unit commitment problem. We target realistic large-scale instances including hundreds of thermal generation units, thousands of transmission lines and nodes, and a large number of stochastic renewable generation units. This scheduling problem is formulated as a two-stage stochastic programming problem with continuous and binary variables in the first stage and only continuous variables in the second stage. We develop a hybrid solution method that decomposes the original problem into a master problem including unit commitment and dispatch decisions, and decomposed subproblems representing dispatch with transmission constraints per scenario. The proposed decomposition embeds a column-and-constraint generation step within the traditional Benders decomposition framework. The performance of the proposed decomposition technique is contrasted with the solution of the extensive form via branch-and-cut and Benders decomposition available in commercial solvers, and with conventional Benders decomposition variants. Our computational experiments show that the proposed method generates bounds of superior quality and finds solutions for instances where other approaches fail.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"12 \",\"pages\":\"Article 100085\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2192440624000029/pdfft?md5=6e5b9d1b9d47dcb072bff8ae23d37d2b&pid=1-s2.0-S2192440624000029-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440624000029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440624000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新型混合方法来解决网络约束随机机组承诺问题。我们的目标是现实的大规模实例,包括数百个火力发电机组、数千条输电线路和节点以及大量随机可再生能源发电机组。该调度问题被表述为一个两阶段随机编程问题,第一阶段包含连续和二进制变量,第二阶段仅包含连续变量。我们开发了一种混合求解方法,将原始问题分解为包括机组承诺和调度决策在内的主问题,以及代表调度与每个方案传输约束的分解子问题。拟议的分解方法在传统的本德斯分解框架内嵌入了列和约束生成步骤。我们将拟议分解技术的性能与商业求解器中通过分支切割和本德斯分解求解的广泛形式,以及传统本德斯分解变体进行了对比。我们的计算实验表明,所提出的方法能生成质量上乘的边界,并能在其他方法无法解决的情况下找到解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An effective hybrid decomposition approach to solve the network-constrained stochastic unit commitment problem in large-scale power systems

We propose a novel hybrid method to solve the network-constrained stochastic unit commitment problem. We target realistic large-scale instances including hundreds of thermal generation units, thousands of transmission lines and nodes, and a large number of stochastic renewable generation units. This scheduling problem is formulated as a two-stage stochastic programming problem with continuous and binary variables in the first stage and only continuous variables in the second stage. We develop a hybrid solution method that decomposes the original problem into a master problem including unit commitment and dispatch decisions, and decomposed subproblems representing dispatch with transmission constraints per scenario. The proposed decomposition embeds a column-and-constraint generation step within the traditional Benders decomposition framework. The performance of the proposed decomposition technique is contrasted with the solution of the extensive form via branch-and-cut and Benders decomposition available in commercial solvers, and with conventional Benders decomposition variants. Our computational experiments show that the proposed method generates bounds of superior quality and finds solutions for instances where other approaches fail.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EURO Journal on Computational Optimization
EURO Journal on Computational Optimization OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
3.50
自引率
0.00%
发文量
28
审稿时长
60 days
期刊介绍: The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信