{"title":"我们从研究大脑中学到了哪些关于人工智能的知识?","authors":"Samuel J Gershman","doi":"10.1007/s00422-024-00983-2","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroscience and artificial intelligence (AI) share a long, intertwined history. It has been argued that discoveries in neuroscience were (and continue to be) instrumental in driving the development of new AI technology. Scrutinizing these historical claims yields a more nuanced story, where AI researchers were loosely inspired by the brain, but ideas flowed mostly in the other direction.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What have we learned about artificial intelligence from studying the brain?\",\"authors\":\"Samuel J Gershman\",\"doi\":\"10.1007/s00422-024-00983-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroscience and artificial intelligence (AI) share a long, intertwined history. It has been argued that discoveries in neuroscience were (and continue to be) instrumental in driving the development of new AI technology. Scrutinizing these historical claims yields a more nuanced story, where AI researchers were loosely inspired by the brain, but ideas flowed mostly in the other direction.</p>\",\"PeriodicalId\":55374,\"journal\":{\"name\":\"Biological Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Cybernetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-024-00983-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-024-00983-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
What have we learned about artificial intelligence from studying the brain?
Neuroscience and artificial intelligence (AI) share a long, intertwined history. It has been argued that discoveries in neuroscience were (and continue to be) instrumental in driving the development of new AI technology. Scrutinizing these historical claims yields a more nuanced story, where AI researchers were loosely inspired by the brain, but ideas flowed mostly in the other direction.
期刊介绍:
Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.