{"title":"利用深度学习验证低计数骨闪烁成像的图像质量改进。","authors":"Taisuke Murata, Takuma Hashimoto, Masahisa Onoguchi, Takayuki Shibutani, Takashi Iimori, Koichi Sawada, Tetsuro Umezawa, Yoshitada Masuda, Takashi Uno","doi":"10.1007/s12194-023-00776-5","DOIUrl":null,"url":null,"abstract":"<p><p>To improve image quality for low-count bone scintigraphy using deep learning and evaluate their clinical applicability. Six hundred patients (training, 500; validation, 50; evaluation, 50) were included in this study. Low-count original images (75%, 50%, 25%, 10%, and 5% counts) were generated from reference images (100% counts) using Poisson resampling. Output (DL-filtered) images were obtained after training with U-Net using reference images as teacher data. Gaussian-filtered images were generated for comparison. Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) to the reference image were calculated to determine image quality. Artificial neural network (ANN) value, bone scan index (BSI), and number of hotspots (Hs) were computed using BONENAVI analysis to assess diagnostic performance. Accuracy of bone metastasis detection and area under the curve (AUC) were calculated. PSNR and SSIM for DL-filtered images were highest in all count percentages. BONENAVI analysis values for DL-filtered images did not differ significantly, regardless of the presence or absence of bone metastases. BONENAVI analysis values for original and Gaussian-filtered images differed significantly at ≦25% counts in patients without bone metastases. In patients with bone metastases, BSI and Hs for original and Gaussian-filtered images differed significantly at ≦10% counts, whereas ANN values did not. The accuracy of bone metastasis detection was highest for DL-filtered images in all count percentages; the AUC did not differ significantly. The deep learning method improved image quality and bone metastasis detection accuracy for low-count bone scintigraphy, suggesting its clinical applicability.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"269-279"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verification of image quality improvement of low-count bone scintigraphy using deep learning.\",\"authors\":\"Taisuke Murata, Takuma Hashimoto, Masahisa Onoguchi, Takayuki Shibutani, Takashi Iimori, Koichi Sawada, Tetsuro Umezawa, Yoshitada Masuda, Takashi Uno\",\"doi\":\"10.1007/s12194-023-00776-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To improve image quality for low-count bone scintigraphy using deep learning and evaluate their clinical applicability. Six hundred patients (training, 500; validation, 50; evaluation, 50) were included in this study. Low-count original images (75%, 50%, 25%, 10%, and 5% counts) were generated from reference images (100% counts) using Poisson resampling. Output (DL-filtered) images were obtained after training with U-Net using reference images as teacher data. Gaussian-filtered images were generated for comparison. Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) to the reference image were calculated to determine image quality. Artificial neural network (ANN) value, bone scan index (BSI), and number of hotspots (Hs) were computed using BONENAVI analysis to assess diagnostic performance. Accuracy of bone metastasis detection and area under the curve (AUC) were calculated. PSNR and SSIM for DL-filtered images were highest in all count percentages. BONENAVI analysis values for DL-filtered images did not differ significantly, regardless of the presence or absence of bone metastases. BONENAVI analysis values for original and Gaussian-filtered images differed significantly at ≦25% counts in patients without bone metastases. In patients with bone metastases, BSI and Hs for original and Gaussian-filtered images differed significantly at ≦10% counts, whereas ANN values did not. The accuracy of bone metastasis detection was highest for DL-filtered images in all count percentages; the AUC did not differ significantly. The deep learning method improved image quality and bone metastasis detection accuracy for low-count bone scintigraphy, suggesting its clinical applicability.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":\" \",\"pages\":\"269-279\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-023-00776-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-023-00776-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Verification of image quality improvement of low-count bone scintigraphy using deep learning.
To improve image quality for low-count bone scintigraphy using deep learning and evaluate their clinical applicability. Six hundred patients (training, 500; validation, 50; evaluation, 50) were included in this study. Low-count original images (75%, 50%, 25%, 10%, and 5% counts) were generated from reference images (100% counts) using Poisson resampling. Output (DL-filtered) images were obtained after training with U-Net using reference images as teacher data. Gaussian-filtered images were generated for comparison. Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) to the reference image were calculated to determine image quality. Artificial neural network (ANN) value, bone scan index (BSI), and number of hotspots (Hs) were computed using BONENAVI analysis to assess diagnostic performance. Accuracy of bone metastasis detection and area under the curve (AUC) were calculated. PSNR and SSIM for DL-filtered images were highest in all count percentages. BONENAVI analysis values for DL-filtered images did not differ significantly, regardless of the presence or absence of bone metastases. BONENAVI analysis values for original and Gaussian-filtered images differed significantly at ≦25% counts in patients without bone metastases. In patients with bone metastases, BSI and Hs for original and Gaussian-filtered images differed significantly at ≦10% counts, whereas ANN values did not. The accuracy of bone metastasis detection was highest for DL-filtered images in all count percentages; the AUC did not differ significantly. The deep learning method improved image quality and bone metastasis detection accuracy for low-count bone scintigraphy, suggesting its clinical applicability.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.