{"title":"通用几何学习的低维不变嵌入","authors":"Nadav Dym, Steven J. Gortler","doi":"10.1007/s10208-024-09641-2","DOIUrl":null,"url":null,"abstract":"<p>This paper studies separating invariants: mappings on <i>D</i>-dimensional domains which are invariant to an appropriate group action and which separate orbits. The motivation for this study comes from the usefulness of separating invariants in proving universality of equivariant neural network architectures. We observe that in several cases the cardinality of separating invariants proposed in the machine learning literature is much larger than the dimension <i>D</i>. As a result, the theoretical universal constructions based on these separating invariants are unrealistically large. Our goal in this paper is to resolve this issue. We show that when a continuous family of semi-algebraic separating invariants is available, separation can be obtained by randomly selecting <span>\\(2D+1 \\)</span> of these invariants. We apply this methodology to obtain an efficient scheme for computing separating invariants for several classical group actions which have been studied in the invariant learning literature. Examples include matrix multiplication actions on point clouds by permutations, rotations, and various other linear groups. Often the requirement of invariant separation is relaxed and only generic separation is required. In this case, we show that only <span>\\(D+1\\)</span> invariants are required. More importantly, generic invariants are often significantly easier to compute, as we illustrate by discussing generic and full separation for weighted graphs. Finally we outline an approach for proving that separating invariants can be constructed also when the random parameters have finite precision.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"25 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Dimensional Invariant Embeddings for Universal Geometric Learning\",\"authors\":\"Nadav Dym, Steven J. Gortler\",\"doi\":\"10.1007/s10208-024-09641-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies separating invariants: mappings on <i>D</i>-dimensional domains which are invariant to an appropriate group action and which separate orbits. The motivation for this study comes from the usefulness of separating invariants in proving universality of equivariant neural network architectures. We observe that in several cases the cardinality of separating invariants proposed in the machine learning literature is much larger than the dimension <i>D</i>. As a result, the theoretical universal constructions based on these separating invariants are unrealistically large. Our goal in this paper is to resolve this issue. We show that when a continuous family of semi-algebraic separating invariants is available, separation can be obtained by randomly selecting <span>\\\\(2D+1 \\\\)</span> of these invariants. We apply this methodology to obtain an efficient scheme for computing separating invariants for several classical group actions which have been studied in the invariant learning literature. Examples include matrix multiplication actions on point clouds by permutations, rotations, and various other linear groups. Often the requirement of invariant separation is relaxed and only generic separation is required. In this case, we show that only <span>\\\\(D+1\\\\)</span> invariants are required. More importantly, generic invariants are often significantly easier to compute, as we illustrate by discussing generic and full separation for weighted graphs. Finally we outline an approach for proving that separating invariants can be constructed also when the random parameters have finite precision.</p>\",\"PeriodicalId\":55151,\"journal\":{\"name\":\"Foundations of Computational Mathematics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-024-09641-2\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09641-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Low-Dimensional Invariant Embeddings for Universal Geometric Learning
This paper studies separating invariants: mappings on D-dimensional domains which are invariant to an appropriate group action and which separate orbits. The motivation for this study comes from the usefulness of separating invariants in proving universality of equivariant neural network architectures. We observe that in several cases the cardinality of separating invariants proposed in the machine learning literature is much larger than the dimension D. As a result, the theoretical universal constructions based on these separating invariants are unrealistically large. Our goal in this paper is to resolve this issue. We show that when a continuous family of semi-algebraic separating invariants is available, separation can be obtained by randomly selecting \(2D+1 \) of these invariants. We apply this methodology to obtain an efficient scheme for computing separating invariants for several classical group actions which have been studied in the invariant learning literature. Examples include matrix multiplication actions on point clouds by permutations, rotations, and various other linear groups. Often the requirement of invariant separation is relaxed and only generic separation is required. In this case, we show that only \(D+1\) invariants are required. More importantly, generic invariants are often significantly easier to compute, as we illustrate by discussing generic and full separation for weighted graphs. Finally we outline an approach for proving that separating invariants can be constructed also when the random parameters have finite precision.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.