ParKQ:兼顾语义相似性和词汇多样性的自动转述质量度量法

Thanh Duong , Tuan-Dung Le , Ho’omana Nathan Horton , Stephanie Link , Thanh Thieu
{"title":"ParKQ:兼顾语义相似性和词汇多样性的自动转述质量度量法","authors":"Thanh Duong ,&nbsp;Tuan-Dung Le ,&nbsp;Ho’omana Nathan Horton ,&nbsp;Stephanie Link ,&nbsp;Thanh Thieu","doi":"10.1016/j.nlp.2024.100054","DOIUrl":null,"url":null,"abstract":"<div><p>BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) have set new state-of-the-art performance on paraphrase quality measurement. However, their main focus is on semantic similarity and lack the lexical diversity between two sentences. LexDivPara (Thieu et al., 2022) introduced a method that combines semantic similarity and lexical diversity, but the method is dependent on a human-provided semantic score to enhance its overall performance. In this work, we present <strong>ParKQ</strong> (<u>Par</u>aphrase ran<u>K</u>ing <u>Q</u>uality), a fully automatic method for measuring the holistic quality of sentential paraphrases. We create a semantic similarity ensemble model by combining the most popular adaptation of the pre-trained BERT (Devlin et al., 2019) network: BLEURT (Sellam et al., 2020), BERTSCORE (Zhang et al., 2020) and Sentence-BERT (Reimers et al., 2019). Then we build paraphrase quality learning-to-rank models with XGBoost (Chen et al., 2016) and TFranking (Pasumarthi et al., 2019) by combining the ensemble semantic score with lexical features including edit distance, BLEU, and ROUGE. To analyze and evaluate the intricate paraphrase quality measure, we create a gold-standard dataset using expert linguistic coding. The gold-standard annotation comprises four linguistic scores (semantic, lexical, grammatical, overall) and spans across three heterogeneous datasets commonly used to benchmark paraphrasing tasks: STS Benchmark,<span><sup>1</sup></span> ParaBank Evaluation<span><sup>2</sup></span> and MSR corpus.<span><sup>3</sup></span> Our <strong>ParKQ</strong> models demonstrate robust correlation with all linguistic scores, making it the first practical tool for measuring the holistic quality (semantic similarity + lexical diversity) of sentential paraphrases. In evaluation, we compare our models against contemporary methods with the ability to generate holistic quality scores for paraphrases including LexDivPara, ParaScore, and the emergent ChatGPT.</p></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"6 ","pages":"Article 100054"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949719124000025/pdfft?md5=2d9dd7ca1e2b2de847f402ea46f05f27&pid=1-s2.0-S2949719124000025-main.pdf","citationCount":"0","resultStr":"{\"title\":\"ParKQ: An automated Paraphrase ranKing Quality measure that balances semantic similarity with lexical diversity\",\"authors\":\"Thanh Duong ,&nbsp;Tuan-Dung Le ,&nbsp;Ho’omana Nathan Horton ,&nbsp;Stephanie Link ,&nbsp;Thanh Thieu\",\"doi\":\"10.1016/j.nlp.2024.100054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) have set new state-of-the-art performance on paraphrase quality measurement. However, their main focus is on semantic similarity and lack the lexical diversity between two sentences. LexDivPara (Thieu et al., 2022) introduced a method that combines semantic similarity and lexical diversity, but the method is dependent on a human-provided semantic score to enhance its overall performance. In this work, we present <strong>ParKQ</strong> (<u>Par</u>aphrase ran<u>K</u>ing <u>Q</u>uality), a fully automatic method for measuring the holistic quality of sentential paraphrases. We create a semantic similarity ensemble model by combining the most popular adaptation of the pre-trained BERT (Devlin et al., 2019) network: BLEURT (Sellam et al., 2020), BERTSCORE (Zhang et al., 2020) and Sentence-BERT (Reimers et al., 2019). Then we build paraphrase quality learning-to-rank models with XGBoost (Chen et al., 2016) and TFranking (Pasumarthi et al., 2019) by combining the ensemble semantic score with lexical features including edit distance, BLEU, and ROUGE. To analyze and evaluate the intricate paraphrase quality measure, we create a gold-standard dataset using expert linguistic coding. The gold-standard annotation comprises four linguistic scores (semantic, lexical, grammatical, overall) and spans across three heterogeneous datasets commonly used to benchmark paraphrasing tasks: STS Benchmark,<span><sup>1</sup></span> ParaBank Evaluation<span><sup>2</sup></span> and MSR corpus.<span><sup>3</sup></span> Our <strong>ParKQ</strong> models demonstrate robust correlation with all linguistic scores, making it the first practical tool for measuring the holistic quality (semantic similarity + lexical diversity) of sentential paraphrases. In evaluation, we compare our models against contemporary methods with the ability to generate holistic quality scores for paraphrases including LexDivPara, ParaScore, and the emergent ChatGPT.</p></div>\",\"PeriodicalId\":100944,\"journal\":{\"name\":\"Natural Language Processing Journal\",\"volume\":\"6 \",\"pages\":\"Article 100054\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949719124000025/pdfft?md5=2d9dd7ca1e2b2de847f402ea46f05f27&pid=1-s2.0-S2949719124000025-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Processing Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949719124000025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719124000025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

BERT(Devlin 等人,2019 年)和 RoBERTa(Liu 等人,2019 年)在转述质量测量方面创造了新的一流性能。然而,它们主要关注的是语义相似性,而缺乏两句话之间的词汇多样性。LexDivPara (Thieu 等人,2022 年)提出了一种结合语义相似性和词汇多样性的方法,但该方法依赖于人工提供的语义评分来提高整体性能。在这项工作中,我们提出了 ParKQ(Paraphrase ranKing Quality,意译质量),这是一种用于测量句子意译整体质量的全自动方法。我们通过结合预训练 BERT(Devlin 等人,2019 年)网络最常用的改编方法,创建了一个语义相似性集合模型:BLEURT (Sellam et al., 2020)、BERTSCORE (Zhang et al., 2020) 和 Sentence-BERT (Reimers et al., 2019)。然后,我们利用 XGBoost(Chen 等人,2016 年)和 TFranking(Pasumarthi 等人,2019 年),将集合语义得分与编辑距离、BLEU 和 ROUGE 等词汇特征相结合,建立了转述质量学习排名模型。为了分析和评估复杂的转述质量度量,我们使用专家语言编码创建了一个黄金标准数据集。黄金标准注释包括四项语言评分(语义、词汇、语法、整体),横跨三个常用于仿拟任务基准的异构数据集:我们的 ParKQ 模型与所有语言评分都有很强的相关性,使其成为测量句子转述整体质量(语义相似性+词汇多样性)的首个实用工具。在评估中,我们将我们的模型与能够为转述生成整体质量分数的当代方法进行了比较,包括 LexDivPara、ParaScore 和新兴的 ChatGPT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ParKQ: An automated Paraphrase ranKing Quality measure that balances semantic similarity with lexical diversity

BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) have set new state-of-the-art performance on paraphrase quality measurement. However, their main focus is on semantic similarity and lack the lexical diversity between two sentences. LexDivPara (Thieu et al., 2022) introduced a method that combines semantic similarity and lexical diversity, but the method is dependent on a human-provided semantic score to enhance its overall performance. In this work, we present ParKQ (Paraphrase ranKing Quality), a fully automatic method for measuring the holistic quality of sentential paraphrases. We create a semantic similarity ensemble model by combining the most popular adaptation of the pre-trained BERT (Devlin et al., 2019) network: BLEURT (Sellam et al., 2020), BERTSCORE (Zhang et al., 2020) and Sentence-BERT (Reimers et al., 2019). Then we build paraphrase quality learning-to-rank models with XGBoost (Chen et al., 2016) and TFranking (Pasumarthi et al., 2019) by combining the ensemble semantic score with lexical features including edit distance, BLEU, and ROUGE. To analyze and evaluate the intricate paraphrase quality measure, we create a gold-standard dataset using expert linguistic coding. The gold-standard annotation comprises four linguistic scores (semantic, lexical, grammatical, overall) and spans across three heterogeneous datasets commonly used to benchmark paraphrasing tasks: STS Benchmark,1 ParaBank Evaluation2 and MSR corpus.3 Our ParKQ models demonstrate robust correlation with all linguistic scores, making it the first practical tool for measuring the holistic quality (semantic similarity + lexical diversity) of sentential paraphrases. In evaluation, we compare our models against contemporary methods with the ability to generate holistic quality scores for paraphrases including LexDivPara, ParaScore, and the emergent ChatGPT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信