Paulina Chałupnik, Aleš Marek, Marie Emilie Leiticia Hovah, Darryl S. Pickering, Piero Temperini, Stephanie Donbosco, Ewa Szymańska, Tommy N. Johansen
{"title":"一种凯纳特受体拮抗剂的氚和氘标记以及作为放射性配体的评估。","authors":"Paulina Chałupnik, Aleš Marek, Marie Emilie Leiticia Hovah, Darryl S. Pickering, Piero Temperini, Stephanie Donbosco, Ewa Szymańska, Tommy N. Johansen","doi":"10.1002/jlcr.4087","DOIUrl":null,"url":null,"abstract":"<p>Kainate receptors play a crucial role in mediating synaptic transmission within the central nervous system. However, the lack of selective pharmacological tool compounds for the GluK3 subunit represents a significant challenge in studying these receptors. Recently presented compound <b>1</b> stands out as a potent antagonist of GluK3 receptors, exhibiting nanomolar affinity at GluK3 receptors and strongly inhibiting glutamate-induced currents at homomeric GluK1 and GluK3 receptors in HEK293 cells with K<sub>b</sub> values of 65 and 39 nM, respectively. This study presents the synthesis of two potent GluK3-preferring iodine derivatives of compound <b>1</b>, serving as precursors for radiolabelling. Furthermore, we demonstrate the optimisation of dehalogenation conditions using hydrogen and deuterium, resulting in [<sup>2</sup>H]-<b>1</b>, and demonstrate the efficient synthesis of the radioligand [<sup>3</sup>H]-<b>1</b> with a specific activity of 1.48 TBq/mmol (40.1 Ci/mmol). Radioligand binding studies conducted with [<sup>3</sup>H]-<b>1</b> as a radiotracer at GluK1, GluK2, and GluK3 receptors expressed in Sf9 and rat P2 membranes demonstrated its potential applicability for selectively studying native GluK3 receptors in the presence of GluK1 and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-blocking ligands.</p>","PeriodicalId":16288,"journal":{"name":"Journal of labelled compounds & radiopharmaceuticals","volume":"67 4","pages":"120-130"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jlcr.4087","citationCount":"0","resultStr":"{\"title\":\"Tritium and deuterium labelling of a kainate receptor antagonist and evaluation as a radioligand\",\"authors\":\"Paulina Chałupnik, Aleš Marek, Marie Emilie Leiticia Hovah, Darryl S. Pickering, Piero Temperini, Stephanie Donbosco, Ewa Szymańska, Tommy N. Johansen\",\"doi\":\"10.1002/jlcr.4087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Kainate receptors play a crucial role in mediating synaptic transmission within the central nervous system. However, the lack of selective pharmacological tool compounds for the GluK3 subunit represents a significant challenge in studying these receptors. Recently presented compound <b>1</b> stands out as a potent antagonist of GluK3 receptors, exhibiting nanomolar affinity at GluK3 receptors and strongly inhibiting glutamate-induced currents at homomeric GluK1 and GluK3 receptors in HEK293 cells with K<sub>b</sub> values of 65 and 39 nM, respectively. This study presents the synthesis of two potent GluK3-preferring iodine derivatives of compound <b>1</b>, serving as precursors for radiolabelling. Furthermore, we demonstrate the optimisation of dehalogenation conditions using hydrogen and deuterium, resulting in [<sup>2</sup>H]-<b>1</b>, and demonstrate the efficient synthesis of the radioligand [<sup>3</sup>H]-<b>1</b> with a specific activity of 1.48 TBq/mmol (40.1 Ci/mmol). Radioligand binding studies conducted with [<sup>3</sup>H]-<b>1</b> as a radiotracer at GluK1, GluK2, and GluK3 receptors expressed in Sf9 and rat P2 membranes demonstrated its potential applicability for selectively studying native GluK3 receptors in the presence of GluK1 and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-blocking ligands.</p>\",\"PeriodicalId\":16288,\"journal\":{\"name\":\"Journal of labelled compounds & radiopharmaceuticals\",\"volume\":\"67 4\",\"pages\":\"120-130\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jlcr.4087\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of labelled compounds & radiopharmaceuticals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jlcr.4087\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of labelled compounds & radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jlcr.4087","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Tritium and deuterium labelling of a kainate receptor antagonist and evaluation as a radioligand
Kainate receptors play a crucial role in mediating synaptic transmission within the central nervous system. However, the lack of selective pharmacological tool compounds for the GluK3 subunit represents a significant challenge in studying these receptors. Recently presented compound 1 stands out as a potent antagonist of GluK3 receptors, exhibiting nanomolar affinity at GluK3 receptors and strongly inhibiting glutamate-induced currents at homomeric GluK1 and GluK3 receptors in HEK293 cells with Kb values of 65 and 39 nM, respectively. This study presents the synthesis of two potent GluK3-preferring iodine derivatives of compound 1, serving as precursors for radiolabelling. Furthermore, we demonstrate the optimisation of dehalogenation conditions using hydrogen and deuterium, resulting in [2H]-1, and demonstrate the efficient synthesis of the radioligand [3H]-1 with a specific activity of 1.48 TBq/mmol (40.1 Ci/mmol). Radioligand binding studies conducted with [3H]-1 as a radiotracer at GluK1, GluK2, and GluK3 receptors expressed in Sf9 and rat P2 membranes demonstrated its potential applicability for selectively studying native GluK3 receptors in the presence of GluK1 and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-blocking ligands.
期刊介绍:
The Journal of Labelled Compounds and Radiopharmaceuticals publishes all aspects of research dealing with labeled compound preparation and applications of these compounds. This includes tracer methods used in medical, pharmacological, biological, biochemical and chemical research in vitro and in vivo.
The Journal of Labelled Compounds and Radiopharmaceuticals devotes particular attention to biomedical research, diagnostic and therapeutic applications of radiopharmaceuticals, covering all stages of development from basic metabolic research and technological development to preclinical and clinical studies based on physically and chemically well characterized molecular structures, coordination compounds and nano-particles.