不可压缩纳维-斯托克斯方程的连续内部惩罚无发散有限元方法的压力和对流稳健边界

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Bosco García-Archilla, Julia Novo
{"title":"不可压缩纳维-斯托克斯方程的连续内部惩罚无发散有限元方法的压力和对流稳健边界","authors":"Bosco García-Archilla, Julia Novo","doi":"10.1093/imanum/drad108","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze a pressure-robust method based on divergence-free mixed finite element methods with continuous interior penalty stabilization. The main goal is to prove an $O(h^{k+1/2})$ error estimate for the $L^2$ norm of the velocity in the convection dominated regime. This bound is pressure robust (the error bound of the velocity does not depend on the pressure) and also convection robust (the constants in the error bounds are independent of the Reynolds number).","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"12 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure and convection robust bounds for continuous interior penalty divergence-free finite element methods for the incompressible Navier–Stokes equations\",\"authors\":\"Bosco García-Archilla, Julia Novo\",\"doi\":\"10.1093/imanum/drad108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze a pressure-robust method based on divergence-free mixed finite element methods with continuous interior penalty stabilization. The main goal is to prove an $O(h^{k+1/2})$ error estimate for the $L^2$ norm of the velocity in the convection dominated regime. This bound is pressure robust (the error bound of the velocity does not depend on the pressure) and also convection robust (the constants in the error bounds are independent of the Reynolds number).\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drad108\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drad108","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们分析了一种基于无发散混合有限元方法和连续内部惩罚稳定的保压方法。其主要目标是证明对流主导机制下速度的 $L^2$ 准则的 $O(h^{k+1/2})$ 误差估计。该误差估计值具有压力鲁棒性(速度误差估计值与压力无关)和对流鲁棒性(误差估计值中的常数与雷诺数无关)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pressure and convection robust bounds for continuous interior penalty divergence-free finite element methods for the incompressible Navier–Stokes equations
In this paper, we analyze a pressure-robust method based on divergence-free mixed finite element methods with continuous interior penalty stabilization. The main goal is to prove an $O(h^{k+1/2})$ error estimate for the $L^2$ norm of the velocity in the convection dominated regime. This bound is pressure robust (the error bound of the velocity does not depend on the pressure) and also convection robust (the constants in the error bounds are independent of the Reynolds number).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信