公设定点定理及其一些应用

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Anders Karlsson
{"title":"公设定点定理及其一些应用","authors":"Anders Karlsson","doi":"10.1007/s00039-024-00658-x","DOIUrl":null,"url":null,"abstract":"<p>A general fixed point theorem for isometries in terms of metric functionals is proved under the assumption of the existence of a conical bicombing. It is new for isometries of convex sets of Banach spaces as well as for non-locally compact CAT(0)-spaces and injective spaces. Examples of actions on non-proper CAT(0)-spaces come from the study of diffeomorphism groups, birational transformations, and compact Kähler manifolds. A special case of the fixed point theorem provides a novel mean ergodic theorem that in the Hilbert space case implies von Neumann’s theorem. The theorem accommodates classically fixed-point-free isometric maps such as those of Kakutani, Edelstein, Alspach and Prus. Moreover, from the main theorem together with some geometric arguments of independent interest, one can deduce that every bounded invertible operator of a Hilbert space admits a nontrivial invariant metric functional on the space of positive operators. This is a result in the direction of the invariant subspace problem although its full meaning is dependent on a future determination of such metric functionals.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Metric Fixed Point Theorem and Some of Its Applications\",\"authors\":\"Anders Karlsson\",\"doi\":\"10.1007/s00039-024-00658-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A general fixed point theorem for isometries in terms of metric functionals is proved under the assumption of the existence of a conical bicombing. It is new for isometries of convex sets of Banach spaces as well as for non-locally compact CAT(0)-spaces and injective spaces. Examples of actions on non-proper CAT(0)-spaces come from the study of diffeomorphism groups, birational transformations, and compact Kähler manifolds. A special case of the fixed point theorem provides a novel mean ergodic theorem that in the Hilbert space case implies von Neumann’s theorem. The theorem accommodates classically fixed-point-free isometric maps such as those of Kakutani, Edelstein, Alspach and Prus. Moreover, from the main theorem together with some geometric arguments of independent interest, one can deduce that every bounded invertible operator of a Hilbert space admits a nontrivial invariant metric functional on the space of positive operators. This is a result in the direction of the invariant subspace problem although its full meaning is dependent on a future determination of such metric functionals.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00658-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00658-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在存在圆锥二梳齿的假设下,证明了以度量函数为单位的等距线的一般定点定理。这对于巴拿赫空间凸集的等距以及非局部紧凑 CAT(0)-spaces 和注入空间都是新的。在非完全 CAT(0)-spaces 上的作用的例子来自于对衍射群、双向变换和紧凑凯勒流形的研究。定点定理的一个特例提供了一个新颖的均值遍历定理,在希尔伯特空间情况下隐含着冯-诺依曼定理。该定理适用于经典的无定点等距映射,如角谷、埃德尔斯坦、阿尔斯帕赫和普鲁斯的映射。此外,根据主定理和一些独立的几何论证,我们可以推导出希尔伯特空间的每个有界可逆算子在正算子空间上都有一个非难不变度量函数。这是不变子空间问题方向上的一个结果,尽管其全部意义取决于将来对这类度量函数的确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Metric Fixed Point Theorem and Some of Its Applications

A general fixed point theorem for isometries in terms of metric functionals is proved under the assumption of the existence of a conical bicombing. It is new for isometries of convex sets of Banach spaces as well as for non-locally compact CAT(0)-spaces and injective spaces. Examples of actions on non-proper CAT(0)-spaces come from the study of diffeomorphism groups, birational transformations, and compact Kähler manifolds. A special case of the fixed point theorem provides a novel mean ergodic theorem that in the Hilbert space case implies von Neumann’s theorem. The theorem accommodates classically fixed-point-free isometric maps such as those of Kakutani, Edelstein, Alspach and Prus. Moreover, from the main theorem together with some geometric arguments of independent interest, one can deduce that every bounded invertible operator of a Hilbert space admits a nontrivial invariant metric functional on the space of positive operators. This is a result in the direction of the invariant subspace problem although its full meaning is dependent on a future determination of such metric functionals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信