部分双曲性和伪阿诺索夫动力学

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sergio R. Fenley, Rafael Potrie
{"title":"部分双曲性和伪阿诺索夫动力学","authors":"Sergio R. Fenley, Rafael Potrie","doi":"10.1007/s00039-024-00670-1","DOIUrl":null,"url":null,"abstract":"<p>We show that if a hyperbolic 3-manifold admits a partially hyperbolic diffeomorphism then it also admits an Anosov flow. Moreover, we give a complete classification of partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds as well as partially hyperbolic diffeomorphisms in Seifert manifolds inducing pseudo-Anosov dynamics in the base. This classification is given in terms of the structure of their center (branching) foliations and the notion of collapsed Anosov flows.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial Hyperbolicity and Pseudo-Anosov Dynamics\",\"authors\":\"Sergio R. Fenley, Rafael Potrie\",\"doi\":\"10.1007/s00039-024-00670-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that if a hyperbolic 3-manifold admits a partially hyperbolic diffeomorphism then it also admits an Anosov flow. Moreover, we give a complete classification of partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds as well as partially hyperbolic diffeomorphisms in Seifert manifolds inducing pseudo-Anosov dynamics in the base. This classification is given in terms of the structure of their center (branching) foliations and the notion of collapsed Anosov flows.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00670-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00670-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果双曲 3-manifold 存在部分双曲衍射,那么它也存在阿诺索夫流。此外,我们给出了双曲 3manifold 中的部分双曲差分形以及 Seifert 流形中的部分双曲差分形的完整分类,这些差分形在基中诱发了伪阿诺索夫动力学。这种分类是根据它们的中心(分支)叶状结构和塌缩阿诺索夫流的概念给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Partial Hyperbolicity and Pseudo-Anosov Dynamics

Partial Hyperbolicity and Pseudo-Anosov Dynamics

We show that if a hyperbolic 3-manifold admits a partially hyperbolic diffeomorphism then it also admits an Anosov flow. Moreover, we give a complete classification of partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds as well as partially hyperbolic diffeomorphisms in Seifert manifolds inducing pseudo-Anosov dynamics in the base. This classification is given in terms of the structure of their center (branching) foliations and the notion of collapsed Anosov flows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信