{"title":"与乘法函数相关的幂矩阵之间的可分性","authors":"Siao A. Hong, Guangyan Y. Zhu","doi":"10.1080/03081087.2024.2311257","DOIUrl":null,"url":null,"abstract":"Let a, b and n be positive integers and let S={x1,…,xn} be a set of n distinct positive integers. For x∈S, one defines GS(x)={y∈S:y<x,y|xand(y|z|x,z∈S)⇒z∈{y,x}}. For any arithmetic function f and a...","PeriodicalId":49905,"journal":{"name":"Linear & Multilinear Algebra","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divisibility among power matrices associated with multiplicative functions\",\"authors\":\"Siao A. Hong, Guangyan Y. Zhu\",\"doi\":\"10.1080/03081087.2024.2311257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let a, b and n be positive integers and let S={x1,…,xn} be a set of n distinct positive integers. For x∈S, one defines GS(x)={y∈S:y<x,y|xand(y|z|x,z∈S)⇒z∈{y,x}}. For any arithmetic function f and a...\",\"PeriodicalId\":49905,\"journal\":{\"name\":\"Linear & Multilinear Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear & Multilinear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03081087.2024.2311257\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear & Multilinear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03081087.2024.2311257","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 a、b 和 n 为正整数,S={x1,...,xn} 为 n 个不同正整数的集合。对于 x∈S,定义 GS(x)={y∈S:y本文章由计算机程序翻译,如有差异,请以英文原文为准。
期刊介绍:
Linear and Multilinear Algebra publishes high-quality original research papers that advance the study of linear and multilinear algebra, or that include novel applications of linear and multilinear algebra to other branches of mathematics and science. Linear and Multilinear Algebra also publishes research problems, survey articles and book reviews of interest to researchers in linear and multilinear algebra. Appropriate areas include, but are not limited to:
spaces over fields or rings
tensor algebras
nonnegative matrices
inequalities in linear algebra
combinatorial matrix theory
numerical linear algebra
representation theory
Lie theory
invariant theory and
operator theory
The audience for Linear and Multilinear Algebra includes both industrial and academic mathematicians.