{"title":"带介电弹性膜蒙皮机翼的升力增强机理研究","authors":"Wei Kang, Shilin Hu, Yanqing Wang","doi":"10.1016/j.jfluidstructs.2024.104083","DOIUrl":null,"url":null,"abstract":"<div><p>Lift enhancement mechanism of an airfoil with the dielectric elastic membrane skin is studied numerically for smart flow control. The flexible membrane is made of dielectric highly elastic polymer material. Such kind of material can deform and oscillate under the prescribed electric potential difference. The dynamic modeling of the dielectric elastic structure is established to describe the electromechanical behaviors. A high-fidelity aero-electromagnetic-structural coupling model is proposed and verified based on CFD/CSD coupling technique. The aerodynamic characteristics of the airfoil with the dielectric elastic membrane skin is analyzed at various angles of attack. The results show that the lift coefficient of the airfoil is 12.33% higher than that of the rigid airfoil at AOA=14°. The effects of coupling oscillation and applied voltages on the aerodynamic performance of the airfoil are emphasized. In the nonlinear coupling, the high-order lock-in frequency plays a significant role in lift enhancement. The lift coefficient is greatly improved when the second-order frequency lock-in occurs and the second-order lock-in frequency is no less than the second-order fundamental frequency of the flow past the rigid airfoil. The corresponding flow pattern is characterized with the formation and maintain of the vortices with similar scale.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":"125 ","pages":"Article 104083"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lift enhancement mechanism study of the airfoil with a dielectric elastic membrane skin\",\"authors\":\"Wei Kang, Shilin Hu, Yanqing Wang\",\"doi\":\"10.1016/j.jfluidstructs.2024.104083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lift enhancement mechanism of an airfoil with the dielectric elastic membrane skin is studied numerically for smart flow control. The flexible membrane is made of dielectric highly elastic polymer material. Such kind of material can deform and oscillate under the prescribed electric potential difference. The dynamic modeling of the dielectric elastic structure is established to describe the electromechanical behaviors. A high-fidelity aero-electromagnetic-structural coupling model is proposed and verified based on CFD/CSD coupling technique. The aerodynamic characteristics of the airfoil with the dielectric elastic membrane skin is analyzed at various angles of attack. The results show that the lift coefficient of the airfoil is 12.33% higher than that of the rigid airfoil at AOA=14°. The effects of coupling oscillation and applied voltages on the aerodynamic performance of the airfoil are emphasized. In the nonlinear coupling, the high-order lock-in frequency plays a significant role in lift enhancement. The lift coefficient is greatly improved when the second-order frequency lock-in occurs and the second-order lock-in frequency is no less than the second-order fundamental frequency of the flow past the rigid airfoil. The corresponding flow pattern is characterized with the formation and maintain of the vortices with similar scale.</p></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":\"125 \",\"pages\":\"Article 104083\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974624000185\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624000185","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Lift enhancement mechanism study of the airfoil with a dielectric elastic membrane skin
Lift enhancement mechanism of an airfoil with the dielectric elastic membrane skin is studied numerically for smart flow control. The flexible membrane is made of dielectric highly elastic polymer material. Such kind of material can deform and oscillate under the prescribed electric potential difference. The dynamic modeling of the dielectric elastic structure is established to describe the electromechanical behaviors. A high-fidelity aero-electromagnetic-structural coupling model is proposed and verified based on CFD/CSD coupling technique. The aerodynamic characteristics of the airfoil with the dielectric elastic membrane skin is analyzed at various angles of attack. The results show that the lift coefficient of the airfoil is 12.33% higher than that of the rigid airfoil at AOA=14°. The effects of coupling oscillation and applied voltages on the aerodynamic performance of the airfoil are emphasized. In the nonlinear coupling, the high-order lock-in frequency plays a significant role in lift enhancement. The lift coefficient is greatly improved when the second-order frequency lock-in occurs and the second-order lock-in frequency is no less than the second-order fundamental frequency of the flow past the rigid airfoil. The corresponding flow pattern is characterized with the formation and maintain of the vortices with similar scale.
期刊介绍:
The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved.
The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.