{"title":"针对不定时谐麦克斯韦问题的三维混合高阶方法的数值研究","authors":"Matteo Cicuttin , Christophe Geuzaine","doi":"10.1016/j.finel.2024.104124","DOIUrl":null,"url":null,"abstract":"<div><p>Hybrid High-Order (HHO) methods are a recently developed class of methods belonging to the broader family of Discontinuous Sketetal methods. Other well known members of the same family are the well-established Hybridizable Discontinuous Galerkin (HDG) method, the nonconforming Virtual Element Method (ncVEM) and the Weak Galerkin (WG) method. HHO provides various valuable assets such as simple construction, support for fully-polyhedral meshes and arbitrary polynomial order, great computational efficiency, physical accuracy and straightforward support for <span><math><mrow><mi>h</mi><mi>p</mi></mrow></math></span>-refinement. In this work we propose an HHO method for the indefinite time-harmonic Maxwell problem and we evaluate its numerical performance. In addition, we present the validation of the method in two different settings: a resonant cavity with Dirichlet conditions and a parallel plate waveguide problem with a total/scattered field decomposition and a plane-wave boundary condition. Finally, as a realistic application, we demonstrate HHO used on the study of the return loss in a waveguide mode converter.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168874X24000180/pdfft?md5=c9653aa53d0bd56f25b149219bf810d3&pid=1-s2.0-S0168874X24000180-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of a 3D hybrid high-order method for the indefinite time-harmonic Maxwell problem\",\"authors\":\"Matteo Cicuttin , Christophe Geuzaine\",\"doi\":\"10.1016/j.finel.2024.104124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hybrid High-Order (HHO) methods are a recently developed class of methods belonging to the broader family of Discontinuous Sketetal methods. Other well known members of the same family are the well-established Hybridizable Discontinuous Galerkin (HDG) method, the nonconforming Virtual Element Method (ncVEM) and the Weak Galerkin (WG) method. HHO provides various valuable assets such as simple construction, support for fully-polyhedral meshes and arbitrary polynomial order, great computational efficiency, physical accuracy and straightforward support for <span><math><mrow><mi>h</mi><mi>p</mi></mrow></math></span>-refinement. In this work we propose an HHO method for the indefinite time-harmonic Maxwell problem and we evaluate its numerical performance. In addition, we present the validation of the method in two different settings: a resonant cavity with Dirichlet conditions and a parallel plate waveguide problem with a total/scattered field decomposition and a plane-wave boundary condition. Finally, as a realistic application, we demonstrate HHO used on the study of the return loss in a waveguide mode converter.</p></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168874X24000180/pdfft?md5=c9653aa53d0bd56f25b149219bf810d3&pid=1-s2.0-S0168874X24000180-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X24000180\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24000180","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Numerical investigation of a 3D hybrid high-order method for the indefinite time-harmonic Maxwell problem
Hybrid High-Order (HHO) methods are a recently developed class of methods belonging to the broader family of Discontinuous Sketetal methods. Other well known members of the same family are the well-established Hybridizable Discontinuous Galerkin (HDG) method, the nonconforming Virtual Element Method (ncVEM) and the Weak Galerkin (WG) method. HHO provides various valuable assets such as simple construction, support for fully-polyhedral meshes and arbitrary polynomial order, great computational efficiency, physical accuracy and straightforward support for -refinement. In this work we propose an HHO method for the indefinite time-harmonic Maxwell problem and we evaluate its numerical performance. In addition, we present the validation of the method in two different settings: a resonant cavity with Dirichlet conditions and a parallel plate waveguide problem with a total/scattered field decomposition and a plane-wave boundary condition. Finally, as a realistic application, we demonstrate HHO used on the study of the return loss in a waveguide mode converter.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.