用完美的转移网络预测横向基因转移。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alitzel López Sánchez, Manuel Lafond
{"title":"用完美的转移网络预测横向基因转移。","authors":"Alitzel López Sánchez, Manuel Lafond","doi":"10.1186/s13015-023-00242-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Horizontal gene transfer inference approaches are usually based on gene sequences: parametric methods search for patterns that deviate from a particular genomic signature, while phylogenetic methods use sequences to reconstruct the gene and species trees. However, it is well-known that sequences have difficulty identifying ancient transfers since mutations have enough time to erase all evidence of such events. In this work, we ask whether character-based methods can predict gene transfers. Their advantage over sequences is that homologous genes can have low DNA similarity, but still have retained enough important common motifs that allow them to have common character traits, for instance the same functional or expression profile. A phylogeny that has two separate clades that acquired the same character independently might indicate the presence of a transfer even in the absence of sequence similarity.</p><p><strong>Our contributions: </strong>We introduce perfect transfer networks, which are phylogenetic networks that can explain the character diversity of a set of taxa under the assumption that characters have unique births, and that once a character is gained it is rarely lost. Examples of such traits include transposable elements, biochemical markers and emergence of organelles, just to name a few. We study the differences between our model and two similar models: perfect phylogenetic networks and ancestral recombination networks. Our goals are to initiate a study on the structural and algorithmic properties of perfect transfer networks. We then show that in polynomial time, one can decide whether a given network is a valid explanation for a set of taxa, and show how, for a given tree, one can add transfer edges to it so that it explains a set of taxa. We finally provide lower and upper bounds on the number of transfers required to explain a set of taxa, in the worst case.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848447/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting horizontal gene transfers with perfect transfer networks.\",\"authors\":\"Alitzel López Sánchez, Manuel Lafond\",\"doi\":\"10.1186/s13015-023-00242-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Horizontal gene transfer inference approaches are usually based on gene sequences: parametric methods search for patterns that deviate from a particular genomic signature, while phylogenetic methods use sequences to reconstruct the gene and species trees. However, it is well-known that sequences have difficulty identifying ancient transfers since mutations have enough time to erase all evidence of such events. In this work, we ask whether character-based methods can predict gene transfers. Their advantage over sequences is that homologous genes can have low DNA similarity, but still have retained enough important common motifs that allow them to have common character traits, for instance the same functional or expression profile. A phylogeny that has two separate clades that acquired the same character independently might indicate the presence of a transfer even in the absence of sequence similarity.</p><p><strong>Our contributions: </strong>We introduce perfect transfer networks, which are phylogenetic networks that can explain the character diversity of a set of taxa under the assumption that characters have unique births, and that once a character is gained it is rarely lost. Examples of such traits include transposable elements, biochemical markers and emergence of organelles, just to name a few. We study the differences between our model and two similar models: perfect phylogenetic networks and ancestral recombination networks. Our goals are to initiate a study on the structural and algorithmic properties of perfect transfer networks. We then show that in polynomial time, one can decide whether a given network is a valid explanation for a set of taxa, and show how, for a given tree, one can add transfer edges to it so that it explains a set of taxa. We finally provide lower and upper bounds on the number of transfers required to explain a set of taxa, in the worst case.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848447/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13015-023-00242-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-023-00242-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

背景:水平基因转移推断方法通常以基因序列为基础:参数法寻找偏离特定基因组特征的模式,而系统发育法则利用序列重建基因树和物种树。然而,众所周知,序列很难识别古老的转移,因为突变有足够的时间抹去这类事件的所有证据。在这项研究中,我们提出了基于特征的方法能否预测基因转移的问题。与序列相比,基于特征的方法的优势在于,同源基因的 DNA 相似性可以很低,但仍然保留了足够多的重要共性,使它们具有共同的特征,例如相同的功能或表达谱。如果一个系统发育中有两个独立的支系独立地获得了相同的特征,那么即使没有序列相似性,也可能表明存在转移:我们介绍了完美的转移网络,这种系统发育网络可以解释一组类群的特征多样性,其假设条件是特征具有唯一的诞生,而且一旦获得特征就很少丢失。这类特征的例子包括转座元件、生化标记和细胞器的出现等等。我们将研究我们的模型与两个类似模型之间的差异:完美的系统发生网络和祖先重组网络。我们的目标是启动对完美转移网络的结构和算法特性的研究。然后,我们证明了在多项式时间内,我们可以决定一个给定的网络是否能有效地解释一组类群,并证明了对于一个给定的树,我们可以如何添加转移边,从而使它能解释一组类群。最后,我们给出了在最坏情况下解释一组类群所需的转移数量的下限和上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting horizontal gene transfers with perfect transfer networks.

Background: Horizontal gene transfer inference approaches are usually based on gene sequences: parametric methods search for patterns that deviate from a particular genomic signature, while phylogenetic methods use sequences to reconstruct the gene and species trees. However, it is well-known that sequences have difficulty identifying ancient transfers since mutations have enough time to erase all evidence of such events. In this work, we ask whether character-based methods can predict gene transfers. Their advantage over sequences is that homologous genes can have low DNA similarity, but still have retained enough important common motifs that allow them to have common character traits, for instance the same functional or expression profile. A phylogeny that has two separate clades that acquired the same character independently might indicate the presence of a transfer even in the absence of sequence similarity.

Our contributions: We introduce perfect transfer networks, which are phylogenetic networks that can explain the character diversity of a set of taxa under the assumption that characters have unique births, and that once a character is gained it is rarely lost. Examples of such traits include transposable elements, biochemical markers and emergence of organelles, just to name a few. We study the differences between our model and two similar models: perfect phylogenetic networks and ancestral recombination networks. Our goals are to initiate a study on the structural and algorithmic properties of perfect transfer networks. We then show that in polynomial time, one can decide whether a given network is a valid explanation for a set of taxa, and show how, for a given tree, one can add transfer edges to it so that it explains a set of taxa. We finally provide lower and upper bounds on the number of transfers required to explain a set of taxa, in the worst case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信