叶绿体结构单体型支架的全局精确优化。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Victor Epain, Rumen Andonov
{"title":"叶绿体结构单体型支架的全局精确优化。","authors":"Victor Epain, Rumen Andonov","doi":"10.1186/s13015-023-00243-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Scaffolding is an intermediate stage of fragment assembly. It consists in orienting and ordering the contigs obtained by the assembly of the sequencing reads. In the general case, the problem has been largely studied with the use of distances data between the contigs. Here we focus on a dedicated scaffolding for the chloroplast genomes. As these genomes are small, circular and with few specific repeats, numerous approaches have been proposed to assemble them. However, their specificities have not been sufficiently exploited.</p><p><strong>Results: </strong>We give a new formulation for the scaffolding in the case of chloroplast genomes as a discrete optimisation problem, that we prove the decision version to be [Formula: see text]-Complete. We take advantage of the knowledge of chloroplast genomes and succeed in expressing the relationships between a few specific genomic repeats in mathematical constraints. Our approach is independent of the distances and adopts a genomic regions view, with the priority on scaffolding the repeats first. In this way, we encode the structural haplotype issue in order to retrieve several genome forms that coexist in the same chloroplast cell. To solve exactly the optimisation problem, we develop an integer linear program that we implement in Python3 package khloraascaf. We test it on synthetic data to investigate its performance behaviour and its robustness against several chosen difficulties.</p><p><strong>Conclusions: </strong>We succeed to model biological knowledge on genomic structures to scaffold chloroplast genomes. Our results suggest that modelling genomic regions is sufficient for scaffolding repeats and is suitable for finding several solutions corresponding to several genome forms.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288059/pdf/","citationCount":"0","resultStr":"{\"title\":\"Global exact optimisations for chloroplast structural haplotype scaffolding.\",\"authors\":\"Victor Epain, Rumen Andonov\",\"doi\":\"10.1186/s13015-023-00243-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Scaffolding is an intermediate stage of fragment assembly. It consists in orienting and ordering the contigs obtained by the assembly of the sequencing reads. In the general case, the problem has been largely studied with the use of distances data between the contigs. Here we focus on a dedicated scaffolding for the chloroplast genomes. As these genomes are small, circular and with few specific repeats, numerous approaches have been proposed to assemble them. However, their specificities have not been sufficiently exploited.</p><p><strong>Results: </strong>We give a new formulation for the scaffolding in the case of chloroplast genomes as a discrete optimisation problem, that we prove the decision version to be [Formula: see text]-Complete. We take advantage of the knowledge of chloroplast genomes and succeed in expressing the relationships between a few specific genomic repeats in mathematical constraints. Our approach is independent of the distances and adopts a genomic regions view, with the priority on scaffolding the repeats first. In this way, we encode the structural haplotype issue in order to retrieve several genome forms that coexist in the same chloroplast cell. To solve exactly the optimisation problem, we develop an integer linear program that we implement in Python3 package khloraascaf. We test it on synthetic data to investigate its performance behaviour and its robustness against several chosen difficulties.</p><p><strong>Conclusions: </strong>We succeed to model biological knowledge on genomic structures to scaffold chloroplast genomes. Our results suggest that modelling genomic regions is sufficient for scaffolding repeats and is suitable for finding several solutions corresponding to several genome forms.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288059/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13015-023-00243-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-023-00243-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

背景:脚手架是片段组装的中间阶段。它包括对测序读数组装得到的等位基因进行定向和排序。在一般情况下,这个问题主要是利用等位基因之间的距离数据来研究的。在这里,我们重点研究叶绿体基因组的专用支架。由于叶绿体基因组较小、环状且很少有特异性重复,因此人们提出了许多方法来组装这些基因组。然而,这些基因组的特异性尚未得到充分利用:结果:我们给出了叶绿体基因组支架组装的新方案,将其视为离散优化问题,并证明决策版[公式:见正文]是完整的。我们利用叶绿体基因组的知识,成功地用数学约束条件表达了几个特定基因组重复序列之间的关系。我们的方法与距离无关,采用基因组区域视角,优先考虑重复序列。通过这种方式,我们将结构单体型问题编码,以便检索出在同一叶绿体细胞中共存的几种基因组形式。为了准确解决优化问题,我们开发了一个整数线性程序,并在 Python3 软件包 khloraascaf 中实现。我们在合成数据上对其进行了测试,以研究它的性能表现及其对所选困难的鲁棒性:我们成功地模拟了有关基因组结构的生物知识,为叶绿体基因组搭建了支架。我们的结果表明,对基因组区域进行建模足以构建重复的支架,而且适合找到与多种基因组形式相对应的多种解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global exact optimisations for chloroplast structural haplotype scaffolding.

Background: Scaffolding is an intermediate stage of fragment assembly. It consists in orienting and ordering the contigs obtained by the assembly of the sequencing reads. In the general case, the problem has been largely studied with the use of distances data between the contigs. Here we focus on a dedicated scaffolding for the chloroplast genomes. As these genomes are small, circular and with few specific repeats, numerous approaches have been proposed to assemble them. However, their specificities have not been sufficiently exploited.

Results: We give a new formulation for the scaffolding in the case of chloroplast genomes as a discrete optimisation problem, that we prove the decision version to be [Formula: see text]-Complete. We take advantage of the knowledge of chloroplast genomes and succeed in expressing the relationships between a few specific genomic repeats in mathematical constraints. Our approach is independent of the distances and adopts a genomic regions view, with the priority on scaffolding the repeats first. In this way, we encode the structural haplotype issue in order to retrieve several genome forms that coexist in the same chloroplast cell. To solve exactly the optimisation problem, we develop an integer linear program that we implement in Python3 package khloraascaf. We test it on synthetic data to investigate its performance behaviour and its robustness against several chosen difficulties.

Conclusions: We succeed to model biological knowledge on genomic structures to scaffold chloroplast genomes. Our results suggest that modelling genomic regions is sufficient for scaffolding repeats and is suitable for finding several solutions corresponding to several genome forms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信