Patrick Anibaldi, Puneet Gill, Prabhleen Kaur, Jiann-Te Kenneth Lee, Akshaysingh Baghele, Vu L Lekate, Troy P Carter, Byron J Lambert
{"title":"蒸发过氧化氢和二氧化氮灭菌对镍钛诺的影响","authors":"Patrick Anibaldi, Puneet Gill, Prabhleen Kaur, Jiann-Te Kenneth Lee, Akshaysingh Baghele, Vu L Lekate, Troy P Carter, Byron J Lambert","doi":"10.2345/0899-8205-58.1.1","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Nitinol is used as the structural framework in numerous types of medical devices (e.g., guidewires, transcatheters, stents). The desire to understand the material compatibility of nitinol with vaporized hydrogen peroxide (VH<sub>2</sub>O<sub>2</sub>) and nitrogen dioxide (NO<sub>2</sub>) sterilization is increasing in healthcare technology. As a result of increased regulatory pressure and capacity limitations related to ethylene oxide (EO) sterilization, the industry is seeking alternative, sustainable sterilization options. <b><i>Objective:</i></b> This study sought to characterize the corrosion resistance of nitinol metal alloy wire when exposed to varying levels of VH<sub>2</sub>O<sub>2</sub> and NO<sub>2</sub> sterilization. <b><i>Methods:</i></b> Scanning electron microscopy (SEM) imaging and energy-dispersive X-ray spectroscopy (EDS) scans were performed to understand the effects of VH<sub>2</sub>O<sub>2</sub> and NO<sub>2</sub> sterilization treatments on the surface morphology and chemical composition of nitinol. <b><i>Results:</i></b> From the SEM-EDS results, no notable difference was observed when comparing VH<sub>2</sub>O<sub>2</sub> and NO<sub>2</sub> test samples with nonsterile control samples. In addition, cyclic potentiodynamic polarization measurements were performed per ASTM F2129-19a to determine corrosion susceptibility. No considerable changes were detected in the electrochemical potential after VH<sub>2</sub>O<sub>2</sub> and NO<sub>2</sub> sterilization treatments, when compared with the nonsterile control samples. <b><i>Conclusion:</i></b> SEM-EDS and corrosion test results indicated no considerable changes in the surface properties or electrochemical potential of the sterilized samples compared with the nonsterilized control samples. Therefore, nitinol metal showed promising results for compatibility with VH<sub>2</sub>O<sub>2</sub> and NO<sub>2</sub> sterilization.</p>","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849103/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of Vaporized Hydrogen Peroxide and Nitrogen Dioxide Sterilization on Nitinol.\",\"authors\":\"Patrick Anibaldi, Puneet Gill, Prabhleen Kaur, Jiann-Te Kenneth Lee, Akshaysingh Baghele, Vu L Lekate, Troy P Carter, Byron J Lambert\",\"doi\":\"10.2345/0899-8205-58.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> Nitinol is used as the structural framework in numerous types of medical devices (e.g., guidewires, transcatheters, stents). The desire to understand the material compatibility of nitinol with vaporized hydrogen peroxide (VH<sub>2</sub>O<sub>2</sub>) and nitrogen dioxide (NO<sub>2</sub>) sterilization is increasing in healthcare technology. As a result of increased regulatory pressure and capacity limitations related to ethylene oxide (EO) sterilization, the industry is seeking alternative, sustainable sterilization options. <b><i>Objective:</i></b> This study sought to characterize the corrosion resistance of nitinol metal alloy wire when exposed to varying levels of VH<sub>2</sub>O<sub>2</sub> and NO<sub>2</sub> sterilization. <b><i>Methods:</i></b> Scanning electron microscopy (SEM) imaging and energy-dispersive X-ray spectroscopy (EDS) scans were performed to understand the effects of VH<sub>2</sub>O<sub>2</sub> and NO<sub>2</sub> sterilization treatments on the surface morphology and chemical composition of nitinol. <b><i>Results:</i></b> From the SEM-EDS results, no notable difference was observed when comparing VH<sub>2</sub>O<sub>2</sub> and NO<sub>2</sub> test samples with nonsterile control samples. In addition, cyclic potentiodynamic polarization measurements were performed per ASTM F2129-19a to determine corrosion susceptibility. No considerable changes were detected in the electrochemical potential after VH<sub>2</sub>O<sub>2</sub> and NO<sub>2</sub> sterilization treatments, when compared with the nonsterile control samples. <b><i>Conclusion:</i></b> SEM-EDS and corrosion test results indicated no considerable changes in the surface properties or electrochemical potential of the sterilized samples compared with the nonsterilized control samples. Therefore, nitinol metal showed promising results for compatibility with VH<sub>2</sub>O<sub>2</sub> and NO<sub>2</sub> sterilization.</p>\",\"PeriodicalId\":35656,\"journal\":{\"name\":\"Biomedical Instrumentation and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849103/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Instrumentation and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2345/0899-8205-58.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Instrumentation and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2345/0899-8205-58.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
Effect of Vaporized Hydrogen Peroxide and Nitrogen Dioxide Sterilization on Nitinol.
Background: Nitinol is used as the structural framework in numerous types of medical devices (e.g., guidewires, transcatheters, stents). The desire to understand the material compatibility of nitinol with vaporized hydrogen peroxide (VH2O2) and nitrogen dioxide (NO2) sterilization is increasing in healthcare technology. As a result of increased regulatory pressure and capacity limitations related to ethylene oxide (EO) sterilization, the industry is seeking alternative, sustainable sterilization options. Objective: This study sought to characterize the corrosion resistance of nitinol metal alloy wire when exposed to varying levels of VH2O2 and NO2 sterilization. Methods: Scanning electron microscopy (SEM) imaging and energy-dispersive X-ray spectroscopy (EDS) scans were performed to understand the effects of VH2O2 and NO2 sterilization treatments on the surface morphology and chemical composition of nitinol. Results: From the SEM-EDS results, no notable difference was observed when comparing VH2O2 and NO2 test samples with nonsterile control samples. In addition, cyclic potentiodynamic polarization measurements were performed per ASTM F2129-19a to determine corrosion susceptibility. No considerable changes were detected in the electrochemical potential after VH2O2 and NO2 sterilization treatments, when compared with the nonsterile control samples. Conclusion: SEM-EDS and corrosion test results indicated no considerable changes in the surface properties or electrochemical potential of the sterilized samples compared with the nonsterilized control samples. Therefore, nitinol metal showed promising results for compatibility with VH2O2 and NO2 sterilization.
期刊介绍:
AAMI publishes Biomedical Instrumentation & Technology (BI&T) a bi-monthly peer-reviewed journal dedicated to the developers, managers, and users of medical instrumentation and technology.