通过多重反应监测和硅学药物再设计发现治疗高级别胶质瘤的多靶点潜在候选药物

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-02-01 Epub Date: 2024-02-06 DOI:10.1089/omi.2023.0256
Ayushi Verma, Rushda Patel, Atharva Mahale, Rujuta Vijay Thorat, Soumya Lipsa Rath, Epari Sridhar, Aliasgar Moiyadi, Sanjeeva Srivastava
{"title":"通过多重反应监测和硅学药物再设计发现治疗高级别胶质瘤的多靶点潜在候选药物","authors":"Ayushi Verma, Rushda Patel, Atharva Mahale, Rujuta Vijay Thorat, Soumya Lipsa Rath, Epari Sridhar, Aliasgar Moiyadi, Sanjeeva Srivastava","doi":"10.1089/omi.2023.0256","DOIUrl":null,"url":null,"abstract":"<p><p>High-grade gliomas (HGGs) are extremely aggressive primary brain tumors with high mortality rates. Despite notable progress achieved by clinical research and biomarkers emerging from proteomics studies, efficacious drugs and therapeutic targets are limited. This study used targeted proteomics, <i>in silico</i> molecular docking, and simulation-based drug repurposing to identify potential drug candidates for HGGs. Importantly, we performed multiple reaction monitoring (MRM) on differentially expressed proteins with putative roles in the development and progression of HGGs based on our previous work and the published literature. Furthermore, <i>in silico</i> molecular docking-based drug repurposing was performed with a customized library of FDA-approved drugs to identify multitarget-directed ligands. The top drug candidates such as Pazopanib, Icotinib, Entrectinib, Regorafenib, and Cabozantinib were explored for their drug-likeness properties using the SwissADME. Pazopanib exhibited binding affinities with a maximum number of proteins and was considered for molecular dynamic simulations and cell toxicity assays. HGG cell lines showed enhanced cytotoxicity and cell proliferation inhibition with Pazopanib and Temozolomide combinatorial treatment compared to Temozolomide alone. To the best of our knowledge, this is the first study combining MRM with molecular docking and simulation-based drug repurposing to identify potential drug candidates for HGG. While the present study identified five multitarget-directed potential drug candidates, future clinical studies in larger cohorts are crucial to evaluate the efficacy of these molecular candidates. The research strategy and methodology used in the present study offer new avenues for innovation in drug discovery and development which may prove useful, particularly for cancers with low cure rates.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multitarget Potential Drug Candidates for High-Grade Gliomas Identified by Multiple Reaction Monitoring Coupled with <i>In Silico</i> Drug Repurposing.\",\"authors\":\"Ayushi Verma, Rushda Patel, Atharva Mahale, Rujuta Vijay Thorat, Soumya Lipsa Rath, Epari Sridhar, Aliasgar Moiyadi, Sanjeeva Srivastava\",\"doi\":\"10.1089/omi.2023.0256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-grade gliomas (HGGs) are extremely aggressive primary brain tumors with high mortality rates. Despite notable progress achieved by clinical research and biomarkers emerging from proteomics studies, efficacious drugs and therapeutic targets are limited. This study used targeted proteomics, <i>in silico</i> molecular docking, and simulation-based drug repurposing to identify potential drug candidates for HGGs. Importantly, we performed multiple reaction monitoring (MRM) on differentially expressed proteins with putative roles in the development and progression of HGGs based on our previous work and the published literature. Furthermore, <i>in silico</i> molecular docking-based drug repurposing was performed with a customized library of FDA-approved drugs to identify multitarget-directed ligands. The top drug candidates such as Pazopanib, Icotinib, Entrectinib, Regorafenib, and Cabozantinib were explored for their drug-likeness properties using the SwissADME. Pazopanib exhibited binding affinities with a maximum number of proteins and was considered for molecular dynamic simulations and cell toxicity assays. HGG cell lines showed enhanced cytotoxicity and cell proliferation inhibition with Pazopanib and Temozolomide combinatorial treatment compared to Temozolomide alone. To the best of our knowledge, this is the first study combining MRM with molecular docking and simulation-based drug repurposing to identify potential drug candidates for HGG. While the present study identified five multitarget-directed potential drug candidates, future clinical studies in larger cohorts are crucial to evaluate the efficacy of these molecular candidates. The research strategy and methodology used in the present study offer new avenues for innovation in drug discovery and development which may prove useful, particularly for cancers with low cure rates.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/omi.2023.0256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/omi.2023.0256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

高级别胶质瘤(HGGs)是侵袭性极强的原发性脑肿瘤,死亡率很高。尽管临床研究和蛋白质组学研究中出现的生物标志物取得了显著进展,但有效药物和治疗靶点仍然有限。本研究利用靶向蛋白质组学、硅学分子对接和基于模拟的药物再利用来确定治疗 HGGs 的潜在候选药物。重要的是,我们根据以前的工作和已发表的文献,对可能在 HGG 发生和发展过程中起作用的差异表达蛋白进行了多反应监测(MRM)。此外,我们还利用定制的美国食品与药物管理局(FDA)批准的药物库进行了基于分子对接的药物再用途研究,以确定多靶点配体。利用 SwissADME 探索了 Pazopanib、Icotinib、Entrectinib、Regorafenib 和 Cabozantinib 等顶级候选药物的药物相似性。帕唑帕尼表现出与最多蛋白质的结合亲和力,并被考虑用于分子动力学模拟和细胞毒性试验。与单独使用替莫唑胺相比,帕唑帕尼和替莫唑胺联合治疗HGG细胞株时,细胞毒性和细胞增殖抑制作用均有所增强。据我们所知,这是第一项将 MRM 与分子对接和基于模拟的药物再利用相结合来确定治疗 HGG 潜在候选药物的研究。虽然本研究确定了五种多靶点潜在候选药物,但未来更大规模的临床研究对评估这些分子候选药物的疗效至关重要。本研究采用的研究策略和方法为药物发现和开发的创新提供了新的途径,尤其是对于治愈率较低的癌症而言,这可能会被证明是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multitarget Potential Drug Candidates for High-Grade Gliomas Identified by Multiple Reaction Monitoring Coupled with In Silico Drug Repurposing.

High-grade gliomas (HGGs) are extremely aggressive primary brain tumors with high mortality rates. Despite notable progress achieved by clinical research and biomarkers emerging from proteomics studies, efficacious drugs and therapeutic targets are limited. This study used targeted proteomics, in silico molecular docking, and simulation-based drug repurposing to identify potential drug candidates for HGGs. Importantly, we performed multiple reaction monitoring (MRM) on differentially expressed proteins with putative roles in the development and progression of HGGs based on our previous work and the published literature. Furthermore, in silico molecular docking-based drug repurposing was performed with a customized library of FDA-approved drugs to identify multitarget-directed ligands. The top drug candidates such as Pazopanib, Icotinib, Entrectinib, Regorafenib, and Cabozantinib were explored for their drug-likeness properties using the SwissADME. Pazopanib exhibited binding affinities with a maximum number of proteins and was considered for molecular dynamic simulations and cell toxicity assays. HGG cell lines showed enhanced cytotoxicity and cell proliferation inhibition with Pazopanib and Temozolomide combinatorial treatment compared to Temozolomide alone. To the best of our knowledge, this is the first study combining MRM with molecular docking and simulation-based drug repurposing to identify potential drug candidates for HGG. While the present study identified five multitarget-directed potential drug candidates, future clinical studies in larger cohorts are crucial to evaluate the efficacy of these molecular candidates. The research strategy and methodology used in the present study offer new avenues for innovation in drug discovery and development which may prove useful, particularly for cancers with low cure rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信