{"title":"基因拷贝数、基因配置和 LC/HC mRNA 比率对靶向整合 CHO 细胞系抗体生产率和产品质量的影响。","authors":"Zion Lee, Jun Wan, Amy Shen, Gavin Barnard","doi":"10.1002/btpr.3433","DOIUrl":null,"url":null,"abstract":"<p>The augmentation of transgene copy numbers is a prevalent approach presumed to enhance transcriptional activity and product yield. CHO cell lines engineered via targeted integration (TI) offer an advantageous platform for investigating the interplay between gene copy number, mRNA abundance, product yield, and product quality. Our investigation revealed that incrementally elevating the gene copy numbers of both IgG heavy chain (HC) and light chain (LC) concurrently resulted in the attainment of plateaus in mRNA levels and product titers, notably occurring beyond four to five gene copies integrated at the same TI site. Furthermore, maintaining a fixed gene copy number while varying the position of genes within the vector influenced the LC/HC mRNA ratio, which subsequently exerted a substantial impact on product titer. Moreover, manipulation of the LC/HC gene ratio through the introduction of surplus LC gene copies led to heightened LC mRNA expression and a reduction in the levels of high molecular weight species. It is noteworthy that the effects of excess LC on product titer were dependent on the specific molecule under consideration. The strategic utilization of PCR tags enabled precise quantification of transcription from each expression slot within the vector, facilitating the identification of highly expressive and less expressive slots. Collectively, these findings significantly enhance our understanding of stable antibody production in TI CHO cell lines.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene copy number, gene configuration and LC/HC mRNA ratio impact on antibody productivity and product quality in targeted integration CHO cell lines\",\"authors\":\"Zion Lee, Jun Wan, Amy Shen, Gavin Barnard\",\"doi\":\"10.1002/btpr.3433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The augmentation of transgene copy numbers is a prevalent approach presumed to enhance transcriptional activity and product yield. CHO cell lines engineered via targeted integration (TI) offer an advantageous platform for investigating the interplay between gene copy number, mRNA abundance, product yield, and product quality. Our investigation revealed that incrementally elevating the gene copy numbers of both IgG heavy chain (HC) and light chain (LC) concurrently resulted in the attainment of plateaus in mRNA levels and product titers, notably occurring beyond four to five gene copies integrated at the same TI site. Furthermore, maintaining a fixed gene copy number while varying the position of genes within the vector influenced the LC/HC mRNA ratio, which subsequently exerted a substantial impact on product titer. Moreover, manipulation of the LC/HC gene ratio through the introduction of surplus LC gene copies led to heightened LC mRNA expression and a reduction in the levels of high molecular weight species. It is noteworthy that the effects of excess LC on product titer were dependent on the specific molecule under consideration. The strategic utilization of PCR tags enabled precise quantification of transcription from each expression slot within the vector, facilitating the identification of highly expressive and less expressive slots. Collectively, these findings significantly enhance our understanding of stable antibody production in TI CHO cell lines.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3433\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3433","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
增加转基因拷贝数是一种普遍的方法,据推测可提高转录活性和产品产量。通过靶向整合(TI)设计的 CHO 细胞系为研究基因拷贝数、mRNA 丰度、产品产量和产品质量之间的相互作用提供了一个有利的平台。我们的研究发现,同时逐步提高 IgG 重链(HC)和轻链(LC)的基因拷贝数会导致 mRNA 水平和产品滴度达到高原,尤其是在同一 TI 位点整合了四到五个基因拷贝后。此外,在保持固定基因拷贝数的同时改变载体内基因的位置会影响 LC/HC mRNA 的比例,进而对产物滴度产生重大影响。此外,通过引入多余的 LC 基因拷贝来操纵 LC/HC 基因比,会导致 LC mRNA 表达增加,高分子量物种的水平降低。值得注意的是,过量 LC 对产物滴度的影响取决于所考虑的特定分子。对 PCR 标记的策略性利用使得对载体中每个表达槽的转录进行精确量化成为可能,从而有助于识别高表达槽和低表达槽。总之,这些发现大大提高了我们对 TI CHO 细胞系中稳定抗体生产的理解。
Gene copy number, gene configuration and LC/HC mRNA ratio impact on antibody productivity and product quality in targeted integration CHO cell lines
The augmentation of transgene copy numbers is a prevalent approach presumed to enhance transcriptional activity and product yield. CHO cell lines engineered via targeted integration (TI) offer an advantageous platform for investigating the interplay between gene copy number, mRNA abundance, product yield, and product quality. Our investigation revealed that incrementally elevating the gene copy numbers of both IgG heavy chain (HC) and light chain (LC) concurrently resulted in the attainment of plateaus in mRNA levels and product titers, notably occurring beyond four to five gene copies integrated at the same TI site. Furthermore, maintaining a fixed gene copy number while varying the position of genes within the vector influenced the LC/HC mRNA ratio, which subsequently exerted a substantial impact on product titer. Moreover, manipulation of the LC/HC gene ratio through the introduction of surplus LC gene copies led to heightened LC mRNA expression and a reduction in the levels of high molecular weight species. It is noteworthy that the effects of excess LC on product titer were dependent on the specific molecule under consideration. The strategic utilization of PCR tags enabled precise quantification of transcription from each expression slot within the vector, facilitating the identification of highly expressive and less expressive slots. Collectively, these findings significantly enhance our understanding of stable antibody production in TI CHO cell lines.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.