{"title":"关于几乎可重复性猜想","authors":"","doi":"10.1007/s00039-024-00671-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Avila’s Almost Reducibility Conjecture (ARC) is a powerful statement linking purely analytic and dynamical properties of analytic one-frequency <span> <span>\\(SL(2,{\\mathbb{R}})\\)</span> </span> cocycles. It is also a fundamental tool in the study of spectral theory of analytic one-frequency Schrödinger operators, with many striking consequences, allowing to give a detailed characterization of the subcritical region. Here we give a proof, completely different from Avila’s, for the important case of Schrödinger cocycles with trigonometric polynomial potentials and non-exponentially approximated frequencies, allowing, in particular, to obtain all the desired spectral consequences in this case.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"34 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Almost Reducibility Conjecture\",\"authors\":\"\",\"doi\":\"10.1007/s00039-024-00671-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Avila’s Almost Reducibility Conjecture (ARC) is a powerful statement linking purely analytic and dynamical properties of analytic one-frequency <span> <span>\\\\(SL(2,{\\\\mathbb{R}})\\\\)</span> </span> cocycles. It is also a fundamental tool in the study of spectral theory of analytic one-frequency Schrödinger operators, with many striking consequences, allowing to give a detailed characterization of the subcritical region. Here we give a proof, completely different from Avila’s, for the important case of Schrödinger cocycles with trigonometric polynomial potentials and non-exponentially approximated frequencies, allowing, in particular, to obtain all the desired spectral consequences in this case.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00671-0\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00671-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Avila’s Almost Reducibility Conjecture (ARC) is a powerful statement linking purely analytic and dynamical properties of analytic one-frequency \(SL(2,{\mathbb{R}})\) cocycles. It is also a fundamental tool in the study of spectral theory of analytic one-frequency Schrödinger operators, with many striking consequences, allowing to give a detailed characterization of the subcritical region. Here we give a proof, completely different from Avila’s, for the important case of Schrödinger cocycles with trigonometric polynomial potentials and non-exponentially approximated frequencies, allowing, in particular, to obtain all the desired spectral consequences in this case.
期刊介绍:
Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis.
GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016.
Publishes major results on topics in geometry and analysis.
Features papers which make connections between relevant fields and their applications to other areas.