{"title":"关于几乎可重复性猜想","authors":"","doi":"10.1007/s00039-024-00671-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Avila’s Almost Reducibility Conjecture (ARC) is a powerful statement linking purely analytic and dynamical properties of analytic one-frequency <span> <span>\\(SL(2,{\\mathbb{R}})\\)</span> </span> cocycles. It is also a fundamental tool in the study of spectral theory of analytic one-frequency Schrödinger operators, with many striking consequences, allowing to give a detailed characterization of the subcritical region. Here we give a proof, completely different from Avila’s, for the important case of Schrödinger cocycles with trigonometric polynomial potentials and non-exponentially approximated frequencies, allowing, in particular, to obtain all the desired spectral consequences in this case.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Almost Reducibility Conjecture\",\"authors\":\"\",\"doi\":\"10.1007/s00039-024-00671-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Avila’s Almost Reducibility Conjecture (ARC) is a powerful statement linking purely analytic and dynamical properties of analytic one-frequency <span> <span>\\\\(SL(2,{\\\\mathbb{R}})\\\\)</span> </span> cocycles. It is also a fundamental tool in the study of spectral theory of analytic one-frequency Schrödinger operators, with many striking consequences, allowing to give a detailed characterization of the subcritical region. Here we give a proof, completely different from Avila’s, for the important case of Schrödinger cocycles with trigonometric polynomial potentials and non-exponentially approximated frequencies, allowing, in particular, to obtain all the desired spectral consequences in this case.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00671-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00671-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Avila’s Almost Reducibility Conjecture (ARC) is a powerful statement linking purely analytic and dynamical properties of analytic one-frequency \(SL(2,{\mathbb{R}})\) cocycles. It is also a fundamental tool in the study of spectral theory of analytic one-frequency Schrödinger operators, with many striking consequences, allowing to give a detailed characterization of the subcritical region. Here we give a proof, completely different from Avila’s, for the important case of Schrödinger cocycles with trigonometric polynomial potentials and non-exponentially approximated frequencies, allowing, in particular, to obtain all the desired spectral consequences in this case.