{"title":"移动式 C 臂透视中散射射线的定向矢量可视化。","authors":"Kyoko Hizukuri, Toshioh Fujibuchi, Hiroyuki Arakawa","doi":"10.1007/s12194-024-00779-w","DOIUrl":null,"url":null,"abstract":"<p><p>Previous radiation protection-measure studies for medical staff who perform X-ray fluoroscopy have employed simulations to investigate the use of protective plates and their shielding effectiveness. Incorporating directional information enables users to gain a clearer understanding of how to position protective plates effectively. Therefore, in this study, we propose the visualization of the directional vectors of scattered rays. X-ray fluoroscopy was performed; the particle and heavy-ion transport code system was used in Monte Carlo simulations to reproduce the behavior of scattered rays in an X-ray room by reproducing a C-arm X-ray fluoroscopy system. Using the calculated results of the scattered-ray behavior, the vectors of photons scattered from the phantom were visualized in three dimensions. A model of the physician was placed on the directional vectors and dose distribution maps to confirm the direction of the scattered rays toward the physician when the protective plate was in place. Simulation accuracy was confirmed by measuring the ambient dose equivalent and comparing the measured and calculated values (agreed within 10%). The directional vectors of the scattered rays radiated outward from the phantom, confirming a large amount of backscatter radiation. The use of a protective plate between the patient and the physician's head part increased the shielding effect, thereby enhancing radiation protection for the physicians compared to cases without the protective plate. The use of directional vectors and the surrounding dose-equivalent distribution of this method can elucidate the appropriate use of radiation protection plates.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"288-296"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directional vector visualization of scattered rays in mobile c-arm fluoroscopy.\",\"authors\":\"Kyoko Hizukuri, Toshioh Fujibuchi, Hiroyuki Arakawa\",\"doi\":\"10.1007/s12194-024-00779-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous radiation protection-measure studies for medical staff who perform X-ray fluoroscopy have employed simulations to investigate the use of protective plates and their shielding effectiveness. Incorporating directional information enables users to gain a clearer understanding of how to position protective plates effectively. Therefore, in this study, we propose the visualization of the directional vectors of scattered rays. X-ray fluoroscopy was performed; the particle and heavy-ion transport code system was used in Monte Carlo simulations to reproduce the behavior of scattered rays in an X-ray room by reproducing a C-arm X-ray fluoroscopy system. Using the calculated results of the scattered-ray behavior, the vectors of photons scattered from the phantom were visualized in three dimensions. A model of the physician was placed on the directional vectors and dose distribution maps to confirm the direction of the scattered rays toward the physician when the protective plate was in place. Simulation accuracy was confirmed by measuring the ambient dose equivalent and comparing the measured and calculated values (agreed within 10%). The directional vectors of the scattered rays radiated outward from the phantom, confirming a large amount of backscatter radiation. The use of a protective plate between the patient and the physician's head part increased the shielding effect, thereby enhancing radiation protection for the physicians compared to cases without the protective plate. The use of directional vectors and the surrounding dose-equivalent distribution of this method can elucidate the appropriate use of radiation protection plates.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":\" \",\"pages\":\"288-296\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-024-00779-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00779-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
摘要
以往针对从事 X 射线透视检查的医务人员进行的辐射防护测量研究采用了模拟方法,以调查防护板的使用情况及其屏蔽效果。纳入方向信息能让用户更清楚地了解如何有效地定位防护板。因此,在本研究中,我们提出了散射射线方向向量可视化的建议。我们进行了 X 射线透视;在蒙特卡罗模拟中使用了粒子和重离子传输代码系统,通过重现 C 臂 X 射线透视系统,再现了 X 射线室中的散射光线行为。利用散射光线行为的计算结果,从模型中散射出的光子矢量被三维可视化。在方向矢量和剂量分布图上放置了医生模型,以确认保护板放置时散射光线的方向。通过测量环境剂量当量并比较测量值和计算值(一致度在 10%以内),确认了模拟的准确性。散射光线的方向矢量从人体模型向外辐射,证实了大量的反向散射辐射。在病人和医生头部之间使用防护板增加了屏蔽效果,从而与不使用防护板的情况相比,加强了对医生的辐射防护。使用这种方法的定向矢量和周围剂量当量分布可以阐明辐射防护板的适当使用。
Directional vector visualization of scattered rays in mobile c-arm fluoroscopy.
Previous radiation protection-measure studies for medical staff who perform X-ray fluoroscopy have employed simulations to investigate the use of protective plates and their shielding effectiveness. Incorporating directional information enables users to gain a clearer understanding of how to position protective plates effectively. Therefore, in this study, we propose the visualization of the directional vectors of scattered rays. X-ray fluoroscopy was performed; the particle and heavy-ion transport code system was used in Monte Carlo simulations to reproduce the behavior of scattered rays in an X-ray room by reproducing a C-arm X-ray fluoroscopy system. Using the calculated results of the scattered-ray behavior, the vectors of photons scattered from the phantom were visualized in three dimensions. A model of the physician was placed on the directional vectors and dose distribution maps to confirm the direction of the scattered rays toward the physician when the protective plate was in place. Simulation accuracy was confirmed by measuring the ambient dose equivalent and comparing the measured and calculated values (agreed within 10%). The directional vectors of the scattered rays radiated outward from the phantom, confirming a large amount of backscatter radiation. The use of a protective plate between the patient and the physician's head part increased the shielding effect, thereby enhancing radiation protection for the physicians compared to cases without the protective plate. The use of directional vectors and the surrounding dose-equivalent distribution of this method can elucidate the appropriate use of radiation protection plates.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.