{"title":"解密中性粒细胞在血液循环和肺癌微环境中手术前后的异质性。","authors":"Fangming Liu, Xuanqi Liu, Yifei Liu, Dongsheng Chen, Xiaoxia Liu, Chuan Qin, Yuanlin Song, Hao Fang, Duojiao Wu","doi":"10.1007/s10565-024-09850-z","DOIUrl":null,"url":null,"abstract":"<p><p>Neutrophils play a crucial role in the immune system within tumor microenvironment. At present, numerous studies have explored the changes of neutrophils' automatic killing effect and cellular communication with other immune cells under pathological conditions through single-cell sequencing. However, there remains a lack of definite conclusion about the identification criteria of neutrophil subgroups. Here, we collected tumor and para-carcinoma tissues, pre- and postoperative blood from patients with non-small cell lung cancer (NSCLC), and performed single-cell RNA (scRNA) sequencing to evaluate the distribution of neutrophil subgroups. We have developed a computational method of over expression rate (OER) to evaluate the specificity of neutrophil subgroups, in order to target gene panels with potential clinical application value. In addition, OER was used to evaluate specificity of neutrophil subsets in healthy people and patients with various diseases to further validate the feasibility of this evaluation system. As a result, we found the specificity of Neu_ c1_ IL1B and Neu_ c2_ cxcr4 (low) in postoperative blood has increased, while that of IL-7R + neutrophils has decreased, indicating that these groups of cells possibly differentiated or migrated to other subgroups in the state of lung cancer. In addition, seven gene panels (Neu_c3_CST7, RSAD2_Neu, S100A2/Pabpc1_Neu, ISG15/Ifit3_Neu, CD74_Neu, PTGS2/Actg1_Neu, SPP1_Neu) were high specific in all the four NSCLC-associated samples, meaning that changes in the percentage of these cell populations would have a high degree of confidence in assessing changes of disease status. In conclusion, combined consideration of the distribution characteristics of neutrophil subgroups could help evaluate the diagnosis and prognosis of NSCLC.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"11"},"PeriodicalIF":5.3000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847186/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deciphering the heterogeneity of neutrophil cells within circulation and the lung cancer microenvironment pre- and post-operation.\",\"authors\":\"Fangming Liu, Xuanqi Liu, Yifei Liu, Dongsheng Chen, Xiaoxia Liu, Chuan Qin, Yuanlin Song, Hao Fang, Duojiao Wu\",\"doi\":\"10.1007/s10565-024-09850-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neutrophils play a crucial role in the immune system within tumor microenvironment. At present, numerous studies have explored the changes of neutrophils' automatic killing effect and cellular communication with other immune cells under pathological conditions through single-cell sequencing. However, there remains a lack of definite conclusion about the identification criteria of neutrophil subgroups. Here, we collected tumor and para-carcinoma tissues, pre- and postoperative blood from patients with non-small cell lung cancer (NSCLC), and performed single-cell RNA (scRNA) sequencing to evaluate the distribution of neutrophil subgroups. We have developed a computational method of over expression rate (OER) to evaluate the specificity of neutrophil subgroups, in order to target gene panels with potential clinical application value. In addition, OER was used to evaluate specificity of neutrophil subsets in healthy people and patients with various diseases to further validate the feasibility of this evaluation system. As a result, we found the specificity of Neu_ c1_ IL1B and Neu_ c2_ cxcr4 (low) in postoperative blood has increased, while that of IL-7R + neutrophils has decreased, indicating that these groups of cells possibly differentiated or migrated to other subgroups in the state of lung cancer. In addition, seven gene panels (Neu_c3_CST7, RSAD2_Neu, S100A2/Pabpc1_Neu, ISG15/Ifit3_Neu, CD74_Neu, PTGS2/Actg1_Neu, SPP1_Neu) were high specific in all the four NSCLC-associated samples, meaning that changes in the percentage of these cell populations would have a high degree of confidence in assessing changes of disease status. In conclusion, combined consideration of the distribution characteristics of neutrophil subgroups could help evaluate the diagnosis and prognosis of NSCLC.</p>\",\"PeriodicalId\":9672,\"journal\":{\"name\":\"Cell Biology and Toxicology\",\"volume\":\"40 1\",\"pages\":\"11\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847186/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology and Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10565-024-09850-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-024-09850-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Deciphering the heterogeneity of neutrophil cells within circulation and the lung cancer microenvironment pre- and post-operation.
Neutrophils play a crucial role in the immune system within tumor microenvironment. At present, numerous studies have explored the changes of neutrophils' automatic killing effect and cellular communication with other immune cells under pathological conditions through single-cell sequencing. However, there remains a lack of definite conclusion about the identification criteria of neutrophil subgroups. Here, we collected tumor and para-carcinoma tissues, pre- and postoperative blood from patients with non-small cell lung cancer (NSCLC), and performed single-cell RNA (scRNA) sequencing to evaluate the distribution of neutrophil subgroups. We have developed a computational method of over expression rate (OER) to evaluate the specificity of neutrophil subgroups, in order to target gene panels with potential clinical application value. In addition, OER was used to evaluate specificity of neutrophil subsets in healthy people and patients with various diseases to further validate the feasibility of this evaluation system. As a result, we found the specificity of Neu_ c1_ IL1B and Neu_ c2_ cxcr4 (low) in postoperative blood has increased, while that of IL-7R + neutrophils has decreased, indicating that these groups of cells possibly differentiated or migrated to other subgroups in the state of lung cancer. In addition, seven gene panels (Neu_c3_CST7, RSAD2_Neu, S100A2/Pabpc1_Neu, ISG15/Ifit3_Neu, CD74_Neu, PTGS2/Actg1_Neu, SPP1_Neu) were high specific in all the four NSCLC-associated samples, meaning that changes in the percentage of these cell populations would have a high degree of confidence in assessing changes of disease status. In conclusion, combined consideration of the distribution characteristics of neutrophil subgroups could help evaluate the diagnosis and prognosis of NSCLC.
期刊介绍:
Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.