Raju Kanukula, Joanne E. McKenzie, Lisa Bero, Zhaoli Dai, Sally McDonald, Cynthia M. Kroeger, Elizabeth Korevaar, Andrew Forbes, Matthew J. Page
{"title":"调查营养研究元分析中选择性纳入研究效果估计值导致的偏差。","authors":"Raju Kanukula, Joanne E. McKenzie, Lisa Bero, Zhaoli Dai, Sally McDonald, Cynthia M. Kroeger, Elizabeth Korevaar, Andrew Forbes, Matthew J. Page","doi":"10.1002/jrsm.1706","DOIUrl":null,"url":null,"abstract":"<p>We aimed to explore, in a sample of systematic reviews (SRs) with meta-analyses of the association between food/diet and health-related outcomes, whether systematic reviewers selectively included study effect estimates in meta-analyses when multiple effect estimates were available. We randomly selected SRs of food/diet and health-related outcomes published between January 2018 and June 2019. We selected the first presented meta-analysis in each review (index meta-analysis), and extracted from study reports all study effect estimates that were eligible for inclusion in the meta-analysis. We calculated the Potential Bias Index (PBI) to quantify and test for evidence of selective inclusion. The PBI ranges from 0 to 1; values above or below 0.5 suggest selective inclusion of effect estimates more or less favourable to the intervention, respectively. We also compared the index meta-analytic estimate to the median of a randomly constructed distribution of meta-analytic estimates (i.e., the estimate expected when there is no selective inclusion). Thirty-nine SRs with 312 studies were included. The estimated PBI was 0.49 (95% CI 0.42–0.55), suggesting that the selection of study effect estimates from those reported was consistent with a process of random selection. In addition, the index meta-analytic effect estimates were similar, on average, to what we would expect to see in meta-analyses generated when there was no selective inclusion. Despite this, we recommend that systematic reviewers report the methods used to select effect estimates to include in meta-analyses, which can help readers understand the risk of selective inclusion bias in the SRs.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 4","pages":"524-542"},"PeriodicalIF":5.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1706","citationCount":"0","resultStr":"{\"title\":\"Investigation of bias due to selective inclusion of study effect estimates in meta-analyses of nutrition research\",\"authors\":\"Raju Kanukula, Joanne E. McKenzie, Lisa Bero, Zhaoli Dai, Sally McDonald, Cynthia M. Kroeger, Elizabeth Korevaar, Andrew Forbes, Matthew J. Page\",\"doi\":\"10.1002/jrsm.1706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We aimed to explore, in a sample of systematic reviews (SRs) with meta-analyses of the association between food/diet and health-related outcomes, whether systematic reviewers selectively included study effect estimates in meta-analyses when multiple effect estimates were available. We randomly selected SRs of food/diet and health-related outcomes published between January 2018 and June 2019. We selected the first presented meta-analysis in each review (index meta-analysis), and extracted from study reports all study effect estimates that were eligible for inclusion in the meta-analysis. We calculated the Potential Bias Index (PBI) to quantify and test for evidence of selective inclusion. The PBI ranges from 0 to 1; values above or below 0.5 suggest selective inclusion of effect estimates more or less favourable to the intervention, respectively. We also compared the index meta-analytic estimate to the median of a randomly constructed distribution of meta-analytic estimates (i.e., the estimate expected when there is no selective inclusion). Thirty-nine SRs with 312 studies were included. The estimated PBI was 0.49 (95% CI 0.42–0.55), suggesting that the selection of study effect estimates from those reported was consistent with a process of random selection. In addition, the index meta-analytic effect estimates were similar, on average, to what we would expect to see in meta-analyses generated when there was no selective inclusion. Despite this, we recommend that systematic reviewers report the methods used to select effect estimates to include in meta-analyses, which can help readers understand the risk of selective inclusion bias in the SRs.</p>\",\"PeriodicalId\":226,\"journal\":{\"name\":\"Research Synthesis Methods\",\"volume\":\"15 4\",\"pages\":\"524-542\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1706\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Synthesis Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1706\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1706","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Investigation of bias due to selective inclusion of study effect estimates in meta-analyses of nutrition research
We aimed to explore, in a sample of systematic reviews (SRs) with meta-analyses of the association between food/diet and health-related outcomes, whether systematic reviewers selectively included study effect estimates in meta-analyses when multiple effect estimates were available. We randomly selected SRs of food/diet and health-related outcomes published between January 2018 and June 2019. We selected the first presented meta-analysis in each review (index meta-analysis), and extracted from study reports all study effect estimates that were eligible for inclusion in the meta-analysis. We calculated the Potential Bias Index (PBI) to quantify and test for evidence of selective inclusion. The PBI ranges from 0 to 1; values above or below 0.5 suggest selective inclusion of effect estimates more or less favourable to the intervention, respectively. We also compared the index meta-analytic estimate to the median of a randomly constructed distribution of meta-analytic estimates (i.e., the estimate expected when there is no selective inclusion). Thirty-nine SRs with 312 studies were included. The estimated PBI was 0.49 (95% CI 0.42–0.55), suggesting that the selection of study effect estimates from those reported was consistent with a process of random selection. In addition, the index meta-analytic effect estimates were similar, on average, to what we would expect to see in meta-analyses generated when there was no selective inclusion. Despite this, we recommend that systematic reviewers report the methods used to select effect estimates to include in meta-analyses, which can help readers understand the risk of selective inclusion bias in the SRs.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.