{"title":"贝叶斯荟萃分析法:利用混合患者试验评估生物标志物亚组的治疗效果。","authors":"Lorna Wheaton, Dan Jackson, Sylwia Bujkiewicz","doi":"10.1002/jrsm.1707","DOIUrl":null,"url":null,"abstract":"<p>During drug development, evidence can emerge to suggest a treatment is more effective in a specific patient subgroup. Whilst early trials may be conducted in biomarker-mixed populations, later trials are more likely to enroll biomarker-positive patients alone, thus leading to trials of the same treatment investigated in different populations. When conducting a meta-analysis, a conservative approach would be to combine only trials conducted in the biomarker-positive subgroup. However, this discards potentially useful information on treatment effects in the biomarker-positive subgroup concealed within observed treatment effects in biomarker-mixed populations. We extend standard random-effects meta-analysis to combine treatment effects obtained from trials with different populations to estimate pooled treatment effects in a biomarker subgroup of interest. The model assumes a systematic difference in treatment effects between biomarker-positive and biomarker-negative subgroups, which is estimated from trials which report either or both treatment effects. The systematic difference and proportion of biomarker-negative patients in biomarker-mixed studies are used to interpolate treatment effects in the biomarker-positive subgroup from observed treatment effects in the biomarker-mixed population. The developed methods are applied to an illustrative example in metastatic colorectal cancer and evaluated in a simulation study. In the example, the developed method improved precision of the pooled treatment effect estimate compared with standard random-effects meta-analysis of trials investigating only biomarker-positive patients. The simulation study confirmed that when the systematic difference in treatment effects between biomarker subgroups is not very large, the developed method can improve precision of estimation of pooled treatment effects while maintaining low bias.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 4","pages":"543-560"},"PeriodicalIF":5.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1707","citationCount":"0","resultStr":"{\"title\":\"Bayesian meta-analysis for evaluating treatment effectiveness in biomarker subgroups using trials of mixed patient populations\",\"authors\":\"Lorna Wheaton, Dan Jackson, Sylwia Bujkiewicz\",\"doi\":\"10.1002/jrsm.1707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>During drug development, evidence can emerge to suggest a treatment is more effective in a specific patient subgroup. Whilst early trials may be conducted in biomarker-mixed populations, later trials are more likely to enroll biomarker-positive patients alone, thus leading to trials of the same treatment investigated in different populations. When conducting a meta-analysis, a conservative approach would be to combine only trials conducted in the biomarker-positive subgroup. However, this discards potentially useful information on treatment effects in the biomarker-positive subgroup concealed within observed treatment effects in biomarker-mixed populations. We extend standard random-effects meta-analysis to combine treatment effects obtained from trials with different populations to estimate pooled treatment effects in a biomarker subgroup of interest. The model assumes a systematic difference in treatment effects between biomarker-positive and biomarker-negative subgroups, which is estimated from trials which report either or both treatment effects. The systematic difference and proportion of biomarker-negative patients in biomarker-mixed studies are used to interpolate treatment effects in the biomarker-positive subgroup from observed treatment effects in the biomarker-mixed population. The developed methods are applied to an illustrative example in metastatic colorectal cancer and evaluated in a simulation study. In the example, the developed method improved precision of the pooled treatment effect estimate compared with standard random-effects meta-analysis of trials investigating only biomarker-positive patients. The simulation study confirmed that when the systematic difference in treatment effects between biomarker subgroups is not very large, the developed method can improve precision of estimation of pooled treatment effects while maintaining low bias.</p>\",\"PeriodicalId\":226,\"journal\":{\"name\":\"Research Synthesis Methods\",\"volume\":\"15 4\",\"pages\":\"543-560\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1707\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Synthesis Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1707\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1707","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Bayesian meta-analysis for evaluating treatment effectiveness in biomarker subgroups using trials of mixed patient populations
During drug development, evidence can emerge to suggest a treatment is more effective in a specific patient subgroup. Whilst early trials may be conducted in biomarker-mixed populations, later trials are more likely to enroll biomarker-positive patients alone, thus leading to trials of the same treatment investigated in different populations. When conducting a meta-analysis, a conservative approach would be to combine only trials conducted in the biomarker-positive subgroup. However, this discards potentially useful information on treatment effects in the biomarker-positive subgroup concealed within observed treatment effects in biomarker-mixed populations. We extend standard random-effects meta-analysis to combine treatment effects obtained from trials with different populations to estimate pooled treatment effects in a biomarker subgroup of interest. The model assumes a systematic difference in treatment effects between biomarker-positive and biomarker-negative subgroups, which is estimated from trials which report either or both treatment effects. The systematic difference and proportion of biomarker-negative patients in biomarker-mixed studies are used to interpolate treatment effects in the biomarker-positive subgroup from observed treatment effects in the biomarker-mixed population. The developed methods are applied to an illustrative example in metastatic colorectal cancer and evaluated in a simulation study. In the example, the developed method improved precision of the pooled treatment effect estimate compared with standard random-effects meta-analysis of trials investigating only biomarker-positive patients. The simulation study confirmed that when the systematic difference in treatment effects between biomarker subgroups is not very large, the developed method can improve precision of estimation of pooled treatment effects while maintaining low bias.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.