海森堡群上有奇点的薛定谔-泊松系统的多重正解

IF 1.5 3区 数学 Q1 MATHEMATICS
Guaiqi Tian, Yucheng An, Hongmin Suo
{"title":"海森堡群上有奇点的薛定谔-泊松系统的多重正解","authors":"Guaiqi Tian, Yucheng An, Hongmin Suo","doi":"10.1186/s13660-024-03096-3","DOIUrl":null,"url":null,"abstract":"In this work, we study the following Schrödinger-Poisson system $$ \\textstyle\\begin{cases} -\\Delta _{H}u+\\mu \\phi u=\\lambda u^{-\\gamma}, &\\text{in } \\Omega , \\\\ -\\Delta _{H}\\phi =u^{2}, &\\text{in } \\Omega , \\\\ u>0, &\\text{in } \\Omega , \\\\ u=\\phi =0, &\\text{on } \\partial \\Omega , \\end{cases} $$ where $\\Delta _{H}$ is the Kohn-Laplacian on the first Heisenberg group $\\mathbb{H}^{1}$ , and $\\Omega \\subset \\mathbb{H}^{1}$ is a smooth bounded domain, $\\mu =\\pm 1$ , $0<\\gamma <1$ , and $\\lambda >0$ are some real parameters. For the above system, we prove the existence and uniqueness of positive solution for $\\mu =1$ and each $\\lambda >0$ . Multiple solutions of the system are also considered for $\\mu =-1$ and $\\lambda >0$ small enough using the critical point theory for nonsmooth functional.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"606 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple positive solutions for Schrödinger-Poisson system with singularity on the Heisenberg group\",\"authors\":\"Guaiqi Tian, Yucheng An, Hongmin Suo\",\"doi\":\"10.1186/s13660-024-03096-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the following Schrödinger-Poisson system $$ \\\\textstyle\\\\begin{cases} -\\\\Delta _{H}u+\\\\mu \\\\phi u=\\\\lambda u^{-\\\\gamma}, &\\\\text{in } \\\\Omega , \\\\\\\\ -\\\\Delta _{H}\\\\phi =u^{2}, &\\\\text{in } \\\\Omega , \\\\\\\\ u>0, &\\\\text{in } \\\\Omega , \\\\\\\\ u=\\\\phi =0, &\\\\text{on } \\\\partial \\\\Omega , \\\\end{cases} $$ where $\\\\Delta _{H}$ is the Kohn-Laplacian on the first Heisenberg group $\\\\mathbb{H}^{1}$ , and $\\\\Omega \\\\subset \\\\mathbb{H}^{1}$ is a smooth bounded domain, $\\\\mu =\\\\pm 1$ , $0<\\\\gamma <1$ , and $\\\\lambda >0$ are some real parameters. For the above system, we prove the existence and uniqueness of positive solution for $\\\\mu =1$ and each $\\\\lambda >0$ . Multiple solutions of the system are also considered for $\\\\mu =-1$ and $\\\\lambda >0$ small enough using the critical point theory for nonsmooth functional.\",\"PeriodicalId\":16088,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"606 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-024-03096-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03096-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了以下薛定谔-泊松系统 $$ \textstyle\begin{cases} -\Delta _{H}u+\mu \phi u=\lambda u^{-\gamma}, &\text{in }.-Delta _{H} u =u^{2}, &\text{in }\u>0, &\text{in }\u=phi =0, &\text{on }\end{cases} $$ 其中 $\Delta _{H}$ 是第一个海森堡群 $\mathbb{H}^{1}$ 上的 Kohn-Laplacian ,而 $\Omega \subset \mathbb{H}^{1}$ 是一个光滑的有界域,$\mu =\pm 1$ , $00$ 是一些实数参数。对于上述系统,我们证明了 $\mu =1$ 和每个 $\lambda >0$ 的正解的存在性和唯一性。利用非光滑函数的临界点理论,我们还考虑了在 $\mu =-1$ 和 $\lambda >0$ 足够小的情况下系统的多解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple positive solutions for Schrödinger-Poisson system with singularity on the Heisenberg group
In this work, we study the following Schrödinger-Poisson system $$ \textstyle\begin{cases} -\Delta _{H}u+\mu \phi u=\lambda u^{-\gamma}, &\text{in } \Omega , \\ -\Delta _{H}\phi =u^{2}, &\text{in } \Omega , \\ u>0, &\text{in } \Omega , \\ u=\phi =0, &\text{on } \partial \Omega , \end{cases} $$ where $\Delta _{H}$ is the Kohn-Laplacian on the first Heisenberg group $\mathbb{H}^{1}$ , and $\Omega \subset \mathbb{H}^{1}$ is a smooth bounded domain, $\mu =\pm 1$ , $0<\gamma <1$ , and $\lambda >0$ are some real parameters. For the above system, we prove the existence and uniqueness of positive solution for $\mu =1$ and each $\lambda >0$ . Multiple solutions of the system are also considered for $\mu =-1$ and $\lambda >0$ small enough using the critical point theory for nonsmooth functional.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
6.20%
发文量
136
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信