通过分离实现具有扩展模态的离散时间间隔时态逻辑的表达完备性

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Dimitar P. Guelev , Ben Moszkowski
{"title":"通过分离实现具有扩展模态的离散时间间隔时态逻辑的表达完备性","authors":"Dimitar P. Guelev ,&nbsp;Ben Moszkowski","doi":"10.1016/j.ipl.2024.106480","DOIUrl":null,"url":null,"abstract":"<div><p>Recently we established an analog of Gabbay's separation theorem about linear temporal logic (LTL) for the extension of Moszkowski's discrete time propositional Interval Temporal Logic (ITL) by two sets of expanding modalities, namely the unary neighbourhood modalities and the binary weak inverses of ITL's <em>chop</em> operator. One of the many useful applications of separation in LTL is the concise proof of LTL's expressive completeness wrt the monadic first-order theory of <span><math><mo>〈</mo><mi>ω</mi><mo>,</mo><mo>&lt;</mo><mo>〉</mo></math></span> it enables. In this paper we show how our separation theorem about ITL facilitates a similar proof of the expressive completeness of ITL with expanding modalities wrt the monadic first- and second-order theories of <span><math><mo>〈</mo><mi>Z</mi><mo>,</mo><mo>&lt;</mo><mo>〉</mo></math></span>.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"186 ","pages":"Article 106480"},"PeriodicalIF":0.7000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020019024000103/pdfft?md5=587945e657c3449e305fda69d4d98cbd&pid=1-s2.0-S0020019024000103-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Expressive completeness by separation for discrete time interval temporal logic with expanding modalities\",\"authors\":\"Dimitar P. Guelev ,&nbsp;Ben Moszkowski\",\"doi\":\"10.1016/j.ipl.2024.106480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently we established an analog of Gabbay's separation theorem about linear temporal logic (LTL) for the extension of Moszkowski's discrete time propositional Interval Temporal Logic (ITL) by two sets of expanding modalities, namely the unary neighbourhood modalities and the binary weak inverses of ITL's <em>chop</em> operator. One of the many useful applications of separation in LTL is the concise proof of LTL's expressive completeness wrt the monadic first-order theory of <span><math><mo>〈</mo><mi>ω</mi><mo>,</mo><mo>&lt;</mo><mo>〉</mo></math></span> it enables. In this paper we show how our separation theorem about ITL facilitates a similar proof of the expressive completeness of ITL with expanding modalities wrt the monadic first- and second-order theories of <span><math><mo>〈</mo><mi>Z</mi><mo>,</mo><mo>&lt;</mo><mo>〉</mo></math></span>.</p></div>\",\"PeriodicalId\":56290,\"journal\":{\"name\":\"Information Processing Letters\",\"volume\":\"186 \",\"pages\":\"Article 106480\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0020019024000103/pdfft?md5=587945e657c3449e305fda69d4d98cbd&pid=1-s2.0-S0020019024000103-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020019024000103\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019024000103","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

最近,我们通过两组扩展模态(即一元邻域模态和 ITL 的劈开算子的二元弱逆变换),为莫兹科夫斯基的离散时间命题区间时态逻辑(ITL)的扩展建立了加贝关于线性时态逻辑(LTL)的分离定理。LTL中的分离有许多有用的应用,其中之一就是简明地证明了LTL相对于〈ω,<〉的一元一阶理论的表达完备性。在本文中,我们将展示我们关于 ITL 的分离定理是如何帮助证明 ITL 在〈Z,<〉的一元一阶和二阶理论中具有扩展模态的表达完备性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expressive completeness by separation for discrete time interval temporal logic with expanding modalities

Recently we established an analog of Gabbay's separation theorem about linear temporal logic (LTL) for the extension of Moszkowski's discrete time propositional Interval Temporal Logic (ITL) by two sets of expanding modalities, namely the unary neighbourhood modalities and the binary weak inverses of ITL's chop operator. One of the many useful applications of separation in LTL is the concise proof of LTL's expressive completeness wrt the monadic first-order theory of ω,< it enables. In this paper we show how our separation theorem about ITL facilitates a similar proof of the expressive completeness of ITL with expanding modalities wrt the monadic first- and second-order theories of Z,<.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing Letters
Information Processing Letters 工程技术-计算机:信息系统
CiteScore
1.80
自引率
0.00%
发文量
70
审稿时长
7.3 months
期刊介绍: Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered. Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信