Yuxing Cheng, Jianzhong Lu, Min Li, Xing Wu, Jinlu Li
{"title":"贝索夫空间中卡马萨-霍尔姆方程的零滤波极限问题","authors":"Yuxing Cheng, Jianzhong Lu, Min Li, Xing Wu, Jinlu Li","doi":"10.1007/s00605-024-01944-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we focus on zero-filter limit problem for the Camassa-Holm equation in the more general Besov spaces. We prove that the solution of the Camassa-Holm equation converges strongly in <span>\\(L^\\infty (0,T;B^s_{2,r}(\\mathbb {R}))\\)</span> to the inviscid Burgers equation as the filter parameter <span>\\(\\alpha \\)</span> tends to zero with the given initial data <span>\\(u_0\\in B^s_{2,r}(\\mathbb {R})\\)</span>. Moreover, we also show that the zero-filter limit for the Camassa-Holm equation does not converges uniformly with respect to the initial data in <span>\\(B^s_{2,r}(\\mathbb {R})\\)</span>.\n</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-filter limit issue for the Camassa–Holm equation in Besov spaces\",\"authors\":\"Yuxing Cheng, Jianzhong Lu, Min Li, Xing Wu, Jinlu Li\",\"doi\":\"10.1007/s00605-024-01944-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we focus on zero-filter limit problem for the Camassa-Holm equation in the more general Besov spaces. We prove that the solution of the Camassa-Holm equation converges strongly in <span>\\\\(L^\\\\infty (0,T;B^s_{2,r}(\\\\mathbb {R}))\\\\)</span> to the inviscid Burgers equation as the filter parameter <span>\\\\(\\\\alpha \\\\)</span> tends to zero with the given initial data <span>\\\\(u_0\\\\in B^s_{2,r}(\\\\mathbb {R})\\\\)</span>. Moreover, we also show that the zero-filter limit for the Camassa-Holm equation does not converges uniformly with respect to the initial data in <span>\\\\(B^s_{2,r}(\\\\mathbb {R})\\\\)</span>.\\n</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-024-01944-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01944-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zero-filter limit issue for the Camassa–Holm equation in Besov spaces
In this paper, we focus on zero-filter limit problem for the Camassa-Holm equation in the more general Besov spaces. We prove that the solution of the Camassa-Holm equation converges strongly in \(L^\infty (0,T;B^s_{2,r}(\mathbb {R}))\) to the inviscid Burgers equation as the filter parameter \(\alpha \) tends to zero with the given initial data \(u_0\in B^s_{2,r}(\mathbb {R})\). Moreover, we also show that the zero-filter limit for the Camassa-Holm equation does not converges uniformly with respect to the initial data in \(B^s_{2,r}(\mathbb {R})\).