Dayu Tan, Jing Wang, Zhaolong Cheng, Yansen Su, Chunhou Zheng
{"title":"基于时序卷积网络从单细胞时程数据推断基因调控网络","authors":"Dayu Tan, Jing Wang, Zhaolong Cheng, Yansen Su, Chunhou Zheng","doi":"10.2174/0115748936282613231211112920","DOIUrl":null,"url":null,"abstract":"Objective: This work aims to infer causal relationships between genes and construct dynamic gene regulatory networks using time-course scRNA-seq data. Methods: We propose an analytical method for inferring GRNs from single-cell time-course data based on temporal convolutional networks (scTGRN), which provides a supervised learning approach to infer causal relationships among genes. scTGRN constructs a 4D tensor representing gene expression features for each gene pair, then inputs the constructed 4D tensor into the temporal convolutional network to train and infer the causal relationship between genes. Results: We validate the performance of scTGRN on five real datasets and four simulated datasets, and the experimental results show that scTGRN outperforms existing models in constructing GRNs. In addition, we test the performance of scTGRN on gene function assignment, and scTGRN outperforms other models. Conclusion: The analysis shows that scTGRN can not only accurately identify the causal relationship between genes, but also can be used to achieve gene function assignment.","PeriodicalId":10801,"journal":{"name":"Current Bioinformatics","volume":"40 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferring Gene Regulatory Networks from Single-Cell Time-Course Data Based on Temporal Convolutional Networks\",\"authors\":\"Dayu Tan, Jing Wang, Zhaolong Cheng, Yansen Su, Chunhou Zheng\",\"doi\":\"10.2174/0115748936282613231211112920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: This work aims to infer causal relationships between genes and construct dynamic gene regulatory networks using time-course scRNA-seq data. Methods: We propose an analytical method for inferring GRNs from single-cell time-course data based on temporal convolutional networks (scTGRN), which provides a supervised learning approach to infer causal relationships among genes. scTGRN constructs a 4D tensor representing gene expression features for each gene pair, then inputs the constructed 4D tensor into the temporal convolutional network to train and infer the causal relationship between genes. Results: We validate the performance of scTGRN on five real datasets and four simulated datasets, and the experimental results show that scTGRN outperforms existing models in constructing GRNs. In addition, we test the performance of scTGRN on gene function assignment, and scTGRN outperforms other models. Conclusion: The analysis shows that scTGRN can not only accurately identify the causal relationship between genes, but also can be used to achieve gene function assignment.\",\"PeriodicalId\":10801,\"journal\":{\"name\":\"Current Bioinformatics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0115748936282613231211112920\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115748936282613231211112920","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Inferring Gene Regulatory Networks from Single-Cell Time-Course Data Based on Temporal Convolutional Networks
Objective: This work aims to infer causal relationships between genes and construct dynamic gene regulatory networks using time-course scRNA-seq data. Methods: We propose an analytical method for inferring GRNs from single-cell time-course data based on temporal convolutional networks (scTGRN), which provides a supervised learning approach to infer causal relationships among genes. scTGRN constructs a 4D tensor representing gene expression features for each gene pair, then inputs the constructed 4D tensor into the temporal convolutional network to train and infer the causal relationship between genes. Results: We validate the performance of scTGRN on five real datasets and four simulated datasets, and the experimental results show that scTGRN outperforms existing models in constructing GRNs. In addition, we test the performance of scTGRN on gene function assignment, and scTGRN outperforms other models. Conclusion: The analysis shows that scTGRN can not only accurately identify the causal relationship between genes, but also can be used to achieve gene function assignment.
期刊介绍:
Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth/mini-reviews, research papers and guest edited thematic issues written by leaders in the field, covering a wide range of the integration of biology with computer and information science.
The journal focuses on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.