超群、q 系和 3 扇形

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Francesca Ferrari, Pavel Putrov
{"title":"超群、q 系和 3 扇形","authors":"Francesca Ferrari,&nbsp;Pavel Putrov","doi":"10.1007/s00023-023-01380-4","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce supergroup analogs of 3-manifold invariants <span>\\({\\widehat{Z}}\\)</span>, also known as homological blocks, which were previously considered for ordinary compact semisimple Lie groups. We focus on superunitary groups and work out the case of <i>SU</i>(2|1) in details. Physically these invariants are realized as the index of BPS states of a system of intersecting fivebranes wrapping a 3-manifold in M-theory. As in the original case, the homological blocks are <i>q</i>-series with integer coefficients. We provide an explicit algorithm to calculate these <i>q</i>-series for a class of plumbed 3-manifolds and study quantum modularity and resurgence properties for some particular 3-manifolds. Finally, we conjecture a formula relating the <span>\\({\\widehat{Z}}\\)</span> invariants and the quantum invariants constructed from a non-semisimple category of representation of the unrolled version of a quantum supergroup.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 5","pages":"2781 - 2837"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supergroups, q-Series and 3-Manifolds\",\"authors\":\"Francesca Ferrari,&nbsp;Pavel Putrov\",\"doi\":\"10.1007/s00023-023-01380-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce supergroup analogs of 3-manifold invariants <span>\\\\({\\\\widehat{Z}}\\\\)</span>, also known as homological blocks, which were previously considered for ordinary compact semisimple Lie groups. We focus on superunitary groups and work out the case of <i>SU</i>(2|1) in details. Physically these invariants are realized as the index of BPS states of a system of intersecting fivebranes wrapping a 3-manifold in M-theory. As in the original case, the homological blocks are <i>q</i>-series with integer coefficients. We provide an explicit algorithm to calculate these <i>q</i>-series for a class of plumbed 3-manifolds and study quantum modularity and resurgence properties for some particular 3-manifolds. Finally, we conjecture a formula relating the <span>\\\\({\\\\widehat{Z}}\\\\)</span> invariants and the quantum invariants constructed from a non-semisimple category of representation of the unrolled version of a quantum supergroup.</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"25 5\",\"pages\":\"2781 - 2837\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-023-01380-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-023-01380-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了 3-manifold不变式 \({\widehat{Z}}\)的超群类似物,也称为同调块,这些类似物以前只考虑过普通紧凑半简单李群。我们将重点放在超单元群上,并详细研究了 SU(2|1) 的情况。从物理上讲,这些不变式是作为包裹 M 理论中 3-manifold 的相交五膜系统的 BPS 状态的指数来实现的。与原始情况一样,同调块是具有整数系数的 q 序列。我们提供了一种明确的算法来计算一类垂线 3-manifolds的q序列,并研究了一些特定 3-manifolds的量子模块性和回升特性。最后,我们猜想了一个与量子超群的展开版本的非半复数表示类别中的({\widehat{Z}})不变式和量子不变式相关的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Supergroups, q-Series and 3-Manifolds

Supergroups, q-Series and 3-Manifolds

Supergroups, q-Series and 3-Manifolds

We introduce supergroup analogs of 3-manifold invariants \({\widehat{Z}}\), also known as homological blocks, which were previously considered for ordinary compact semisimple Lie groups. We focus on superunitary groups and work out the case of SU(2|1) in details. Physically these invariants are realized as the index of BPS states of a system of intersecting fivebranes wrapping a 3-manifold in M-theory. As in the original case, the homological blocks are q-series with integer coefficients. We provide an explicit algorithm to calculate these q-series for a class of plumbed 3-manifolds and study quantum modularity and resurgence properties for some particular 3-manifolds. Finally, we conjecture a formula relating the \({\widehat{Z}}\) invariants and the quantum invariants constructed from a non-semisimple category of representation of the unrolled version of a quantum supergroup.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信