论非赫米蒂量子力学中散射算子的单一性

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
R. G. Novikov, I. A. Taimanov
{"title":"论非赫米蒂量子力学中散射算子的单一性","authors":"R. G. Novikov,&nbsp;I. A. Taimanov","doi":"10.1007/s00023-024-01414-5","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the Schrödinger operator with regular short range complex-valued potential in dimension <span>\\(d\\ge 1\\)</span>. We show that, for <span>\\(d\\ge 2\\)</span>, the unitarity of scattering operator for this Hamiltonian at high energies implies the reality of the potential (that is Hermiticity of Hamiltonian). In contrast, for <span>\\(d=1\\)</span>, we present complex-valued exponentially localized soliton potentials with unitary scattering operator for all positive energies and with unbroken <i>PT</i> symmetry. We also present examples of complex-valued regular short range potentials with real spectrum for <span>\\(d=3\\)</span>. Some directions for further research are formulated.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 8","pages":"3899 - 3909"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Unitarity of the Scattering Operator in Non-Hermitian Quantum Mechanics\",\"authors\":\"R. G. Novikov,&nbsp;I. A. Taimanov\",\"doi\":\"10.1007/s00023-024-01414-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the Schrödinger operator with regular short range complex-valued potential in dimension <span>\\\\(d\\\\ge 1\\\\)</span>. We show that, for <span>\\\\(d\\\\ge 2\\\\)</span>, the unitarity of scattering operator for this Hamiltonian at high energies implies the reality of the potential (that is Hermiticity of Hamiltonian). In contrast, for <span>\\\\(d=1\\\\)</span>, we present complex-valued exponentially localized soliton potentials with unitary scattering operator for all positive energies and with unbroken <i>PT</i> symmetry. We also present examples of complex-valued regular short range potentials with real spectrum for <span>\\\\(d=3\\\\)</span>. Some directions for further research are formulated.</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"25 8\",\"pages\":\"3899 - 3909\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-024-01414-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01414-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们考虑了具有规则短程复值势的(d/ge 1)维薛定谔算子。我们证明,对于(dge 2),该哈密顿在高能量下散射算子的单位性意味着势的现实性(即哈密顿的赫米蒂性)。与此相反,对于 \(d=1\) ,我们提出了复值指数局部孤子势,其散射算子在所有正能量下都是单一的,并且具有不间断的 PT 对称性。我们还举例说明了在\(d=3\)时具有实谱的复值规则短程势。我们还提出了一些进一步研究的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Unitarity of the Scattering Operator in Non-Hermitian Quantum Mechanics

We consider the Schrödinger operator with regular short range complex-valued potential in dimension \(d\ge 1\). We show that, for \(d\ge 2\), the unitarity of scattering operator for this Hamiltonian at high energies implies the reality of the potential (that is Hermiticity of Hamiltonian). In contrast, for \(d=1\), we present complex-valued exponentially localized soliton potentials with unitary scattering operator for all positive energies and with unbroken PT symmetry. We also present examples of complex-valued regular short range potentials with real spectrum for \(d=3\). Some directions for further research are formulated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信