{"title":"论球墨铸铁中石墨在剧烈塑性变形过程中的形态变化","authors":"","doi":"10.1134/s0031918x23601312","DOIUrl":null,"url":null,"abstract":"<span> <h3>Abstract</h3> <p>For decades, researchers have been concerned about the formability of manufactured wrought cast iron, with brittleness being a major issue in these alloys. To address this, the ferrite phase has been identified as a suitable matrix for cast iron deformation due to its ability to provide satisfactory ductility and avoid brittle limitations. In this study, machined parts of ductile cast iron were subjected to an annealing process at approximately 900°C for 1 h before undergoing hot plastic deformation with varying degrees of reduction. The deformation was carried out using a cylinder-covered hot compression (CCC or CCHC) technique. The primary objective of this study is to gain a microscopic understanding of hot plastically deformed ductile cast iron and propose a mathematically formulated flow strain that takes into account the contributions of the microstructure’s constituent phases. This analysis aims to provide a comprehensive characterization of deformed graphite within the microstructure. Optical microscopy (OM) and scanning electron microscopy (SEM) were employed to obtain results for the characterization. The findings revealed that as the reduction increased, spheroidal graphite tended to transform into a lamellar structure, resulting in diverse properties. Additionally, a microhardness test was conducted to assess the variation in mechanical properties throughout each deformation step.</p> </span>","PeriodicalId":20180,"journal":{"name":"Physics of Metals and Metallography","volume":"10 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Morphology Variation of Graphite in Ductile Cast Iron through Severe Plastic Deformation\",\"authors\":\"\",\"doi\":\"10.1134/s0031918x23601312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<span> <h3>Abstract</h3> <p>For decades, researchers have been concerned about the formability of manufactured wrought cast iron, with brittleness being a major issue in these alloys. To address this, the ferrite phase has been identified as a suitable matrix for cast iron deformation due to its ability to provide satisfactory ductility and avoid brittle limitations. In this study, machined parts of ductile cast iron were subjected to an annealing process at approximately 900°C for 1 h before undergoing hot plastic deformation with varying degrees of reduction. The deformation was carried out using a cylinder-covered hot compression (CCC or CCHC) technique. The primary objective of this study is to gain a microscopic understanding of hot plastically deformed ductile cast iron and propose a mathematically formulated flow strain that takes into account the contributions of the microstructure’s constituent phases. This analysis aims to provide a comprehensive characterization of deformed graphite within the microstructure. Optical microscopy (OM) and scanning electron microscopy (SEM) were employed to obtain results for the characterization. The findings revealed that as the reduction increased, spheroidal graphite tended to transform into a lamellar structure, resulting in diverse properties. Additionally, a microhardness test was conducted to assess the variation in mechanical properties throughout each deformation step.</p> </span>\",\"PeriodicalId\":20180,\"journal\":{\"name\":\"Physics of Metals and Metallography\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Metals and Metallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1134/s0031918x23601312\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Metals and Metallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1134/s0031918x23601312","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
On the Morphology Variation of Graphite in Ductile Cast Iron through Severe Plastic Deformation
Abstract
For decades, researchers have been concerned about the formability of manufactured wrought cast iron, with brittleness being a major issue in these alloys. To address this, the ferrite phase has been identified as a suitable matrix for cast iron deformation due to its ability to provide satisfactory ductility and avoid brittle limitations. In this study, machined parts of ductile cast iron were subjected to an annealing process at approximately 900°C for 1 h before undergoing hot plastic deformation with varying degrees of reduction. The deformation was carried out using a cylinder-covered hot compression (CCC or CCHC) technique. The primary objective of this study is to gain a microscopic understanding of hot plastically deformed ductile cast iron and propose a mathematically formulated flow strain that takes into account the contributions of the microstructure’s constituent phases. This analysis aims to provide a comprehensive characterization of deformed graphite within the microstructure. Optical microscopy (OM) and scanning electron microscopy (SEM) were employed to obtain results for the characterization. The findings revealed that as the reduction increased, spheroidal graphite tended to transform into a lamellar structure, resulting in diverse properties. Additionally, a microhardness test was conducted to assess the variation in mechanical properties throughout each deformation step.
期刊介绍:
The Physics of Metals and Metallography (Fizika metallov i metallovedenie) was founded in 1955 by the USSR Academy of Sciences. Its scientific profile involves the theory of metals and metal alloys, their electrical and magnetic properties, as well as their structure, phase transformations, and principal mechanical properties. The journal also publishes scientific reviews and papers written by experts involved in fundamental, application, and technological studies. The annual volume of publications amounts to some 250 papers submitted from 100 leading national scientific institutions.