{"title":"关于某些域中的可定义群和 D 群的通用推导","authors":"Ya’acov Peterzil, Anand Pillay, Françoise Point","doi":"10.4153/s0008414x24000063","DOIUrl":null,"url":null,"abstract":"<p>We continue our study from Peterzil et al. (2022, <span>Preprint</span>, arXiv:2208.08293) of finite-dimensional definable groups in models of the theory <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$T_{\\partial }$</span></span></img></span></span>, the model companion of an o-minimal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal {L}}$</span></span></img></span></span>-theory <span>T</span> expanded by a generic derivation <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\partial $</span></span></img></span></span> as in Fornasiero and Kaplan (2021, <span>Journal of Mathematical Logic</span> 21, 2150007).</p><p>We generalize Buium’s notion of an algebraic <span>D</span>-group to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal {L}}$</span></span></img></span></span>-definable <span>D</span>-groups, namely <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$(G,s)$</span></span></img></span></span>, where <span>G</span> is an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline6.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal {L}}$</span></span></img></span></span>-definable group in a model of <span>T</span>, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$s:G\\to \\tau (G)$</span></span></img></span></span> is an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal {L}}$</span></span></img></span></span>-definable group section. Our main theorem says that every definable group of finite dimension in a model of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$T_\\partial $</span></span></img></span></span> is definably isomorphic to a group of the form <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*}(G,s)^\\partial=\\{g\\in G:s(g)=\\nabla g\\},\\end{align*} $$</span></span></img></span></p><p>for some <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline10.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal {L}}$</span></span></img></span></span>-definable <span>D</span>-group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$(G,s)$</span></span></img></span></span> (where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$\\nabla (g)=(g,\\partial g)$</span></span></img></span></span>).</p><p>We obtain analogous results when <span>T</span> is either the theory of <span>p</span>-adically closed fields or the theory of pseudo-finite fields of characteristic <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$0$</span></span></img></span></span>.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On definable groups and D-groups in certain fields with a generic derivation\",\"authors\":\"Ya’acov Peterzil, Anand Pillay, Françoise Point\",\"doi\":\"10.4153/s0008414x24000063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We continue our study from Peterzil et al. (2022, <span>Preprint</span>, arXiv:2208.08293) of finite-dimensional definable groups in models of the theory <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$T_{\\\\partial }$</span></span></img></span></span>, the model companion of an o-minimal <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal {L}}$</span></span></img></span></span>-theory <span>T</span> expanded by a generic derivation <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\partial $</span></span></img></span></span> as in Fornasiero and Kaplan (2021, <span>Journal of Mathematical Logic</span> 21, 2150007).</p><p>We generalize Buium’s notion of an algebraic <span>D</span>-group to <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal {L}}$</span></span></img></span></span>-definable <span>D</span>-groups, namely <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(G,s)$</span></span></img></span></span>, where <span>G</span> is an <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal {L}}$</span></span></img></span></span>-definable group in a model of <span>T</span>, and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$s:G\\\\to \\\\tau (G)$</span></span></img></span></span> is an <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal {L}}$</span></span></img></span></span>-definable group section. Our main theorem says that every definable group of finite dimension in a model of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$T_\\\\partial $</span></span></img></span></span> is definably isomorphic to a group of the form <span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_eqnu1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$$ \\\\begin{align*}(G,s)^\\\\partial=\\\\{g\\\\in G:s(g)=\\\\nabla g\\\\},\\\\end{align*} $$</span></span></img></span></p><p>for some <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal {L}}$</span></span></img></span></span>-definable <span>D</span>-group <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(G,s)$</span></span></img></span></span> (where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\nabla (g)=(g,\\\\partial g)$</span></span></img></span></span>).</p><p>We obtain analogous results when <span>T</span> is either the theory of <span>p</span>-adically closed fields or the theory of pseudo-finite fields of characteristic <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline13.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$0$</span></span></img></span></span>.</p>\",\"PeriodicalId\":501820,\"journal\":{\"name\":\"Canadian Journal of Mathematics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x24000063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们继续研究彼得齐尔等人(2022,预印本,arXiv:2208.08293)理论模型中的有限维可定义群$T_{\partial }$,即一个o-最小${\mathcal {L}}$理论T的模型同伴,该理论由通用派生$\partial $展开,如福纳西耶罗和卡普兰(2021,《数理逻辑杂志》21,2150007)。我们将布伊姆的代数 D 群概念推广到 ${\mathcal {L}}$ 可定义 D 群,即 $(G,s)$,其中 G 是 T 模型中的 ${mathcal {L}}$ 可定义群,而 $s:G\to \tau (G)$ 是 ${\mathcal {L}}$ 可定义群部分。我们的主要定理指出,在 $T_\partial $ 的模型中,每一个有限维的可定义群都与形式为 $$ \begin{align*}(G,s)^\partial=\{g\in G:s(g)=\nabla g\},\end{align*} 的群同构。对于某个 ${mathcal {L}}$ 定义的 D 群 $(G,s)$(其中 $\nabla (g)=(g,\partial g)$),我们会得到类似的结果。当 T 是 p-adically closed fields 理论或特征 $0$ 的伪无限域理论时,我们会得到类似的结果。
On definable groups and D-groups in certain fields with a generic derivation
We continue our study from Peterzil et al. (2022, Preprint, arXiv:2208.08293) of finite-dimensional definable groups in models of the theory $T_{\partial }$, the model companion of an o-minimal ${\mathcal {L}}$-theory T expanded by a generic derivation $\partial $ as in Fornasiero and Kaplan (2021, Journal of Mathematical Logic 21, 2150007).
We generalize Buium’s notion of an algebraic D-group to ${\mathcal {L}}$-definable D-groups, namely $(G,s)$, where G is an ${\mathcal {L}}$-definable group in a model of T, and $s:G\to \tau (G)$ is an ${\mathcal {L}}$-definable group section. Our main theorem says that every definable group of finite dimension in a model of $T_\partial $ is definably isomorphic to a group of the form $$ \begin{align*}(G,s)^\partial=\{g\in G:s(g)=\nabla g\},\end{align*} $$
for some ${\mathcal {L}}$-definable D-group $(G,s)$ (where $\nabla (g)=(g,\partial g)$).
We obtain analogous results when T is either the theory of p-adically closed fields or the theory of pseudo-finite fields of characteristic $0$.